HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS:
Modeling in the E-Business Era

Edited by
DAVID SIMCHI-LEVI
Massachusetts Institute of Technology

S. DAVID WU
Lehigh University

ZUO-JUN (MAX) SHEN
University of Florida

Kluwer Academic Publishers
Boston/Dordrecht/London
Chapter 1
Supply Chain Analysis and E-Business: An Overview 1
David Simchi-Levi, S. David Wu and Z. Max Shen

1. Introduction 1
2. Main Components of the Handbook 3
 2.1 Emerging Paradigms for Supply Chain Analysis 3
 2.2 Auctions and Bidding 4
 2.3 Supply Chain Coordinations in E-Business 5
 2.4 Multi-Channel Coordination 7
 2.5 Network Design, IT, and Financial Services. 8
3. Conclusions 9
Acknowledgments 9

Part I Emerging Paradigms for Supply Chain Analysis

Chapter 2
Game Theory in Supply Chain Analysis 13
Gérard P. Cachon and Serguei Netessine

1. Introduction 13
 1.1 Scope and relation to the literature 14
2. Non-cooperative static games 14
 2.1 Game setup 15
 2.2 Best response functions and the equilibrium of the game 17
 2.3 Existence of equilibrium 21
 2.4 Uniqueness of equilibrium 29
 2.5 Multiple equilibria 35
 2.6 Comparative statics in games 36
3. Dynamic games 40
 3.1 Sequential moves: Stackelberg equilibrium concept 40
 3.2 Simultaneous moves: repeated and stochastic games 41
 3.3 Differential games 45
4. Cooperative games 48
 4.1 Games in characteristic form and the core of the game 49
 4.2 Shapley value 50
 4.3 Biform games 51
5. Signaling, Screening and Bayesian Games 52
 5.1 Signaling Game 53
 5.2 Screening 56
 5.3 Bayesian games 57
5. Implementing an Efficient Auction 257
 5.1 Winner Determination 257
 5.2 Supposed Problems with VCG 261
 5.3 Ascending Implementations of VCG 264
 5.4 Threshold and Collusion Problems 276
 5.5 Other Ascending Auctions 277
 5.6 Complexity of Communication 278

6. Interdependent Values 278

7. Two Examples 281
 7.1 The German UMTS-Auction 281
 7.2 Logistics Auctions 284

References 287

Part III Supply Chain Coordinations in E-Business

Chapter 8
The Marketing-Operations Interface 295
Sergio Chayet, Wallace J. Hopp and Xiaowei Xu

1. Product Development 298
 1.1 Conjoint Analysis For Concept Development 299
 1.2 System Level and Detailed Design 301
 1.3 Prototyping and Testing 304
 1.4 Macro-Level Research 305

2. Sales 306
 2.1 Pricing 307
 2.2 Lead Time Quoting 309
 2.3 Quality Management 311
 2.4 Product Variety 312

3. Production/Delivery 313

4. Service 316
 4.1 Previous Research 316
 4.2 Research Opportunities 317

5. Conclusions 319
References 322

Chapter 9
Coordination of Pricing and Inventory Decisions: A Survey and
Classification 335

1. Introduction 335
 1.1 Motivation 335
 1.2 Scope 336
 1.3 Classification and Outline 338

2. Single Period Models 340

3. Multiple Period Models 343
 3.1 Models to Explain Price Realizations 343
 3.2 General Pricing and Production Models 344
 3.3 Retail, Clearance, and Promotion 351
 3.4 Fixed Pricing 358

4. Extension Areas 359
 4.1 Multiple Products, Classes, and Service levels 359
 4.2 Capacity as a Decision 366
Contents

4.3 Supply Chain Coordination 367
4.4 Competition 369
4.5 Demand Learning and Information 373

5. Industry 376
5.1 Dynamic Pricing Practice 376
5.2 Related Research 376
5.3 Price Discrimination in Practice 377
5.4 Potential problems with Dynamic Pricing 378

6. Conclusions and Future Research 379
References 382

Chapter 10
Collaborative Forecasting and its Impact on Supply Chain Performance 393
Yossi Aviv
1. Notation and Preliminaries 402
2. Common Approaches for Modeling Demand Uncertainty and Forecast Evolution in the Inventory Management Literature 404
2.1 Demand models with unknown parameters 404
2.2 A Markov-modulated demand process 406
2.3 A linear state-space model 407
3. Common Types of Single-Location Inventory Control Policies 410
3.1 Dynamic models for inventory management 410
3.2 Heuristic policies 416
3.3 An adaptive replenishment policy for the linear state-space model 419
4. Models for Decentralized Forecasting Processes 421
4.1 The orders generated by the retailer 422
4.2 Enriched information structures 425
4.3 Assessment of the benefits of information sharing 428
5. An inventory model of collaborative forecasting 429
5.1 Installation-based inventory systems 430
5.2 Echelon-based inventory systems 432
6. Cost analysis 435
6.1 Cost assessment 435
6.2 Policy coordination in the supply chain 437
6.3 Decoupled two-level inventory systems 439
6.4 Results from the study of CF 440
7. Summary 442
References 443

Chapter 11
Available to Promise 447
Michael O. Ball, Chien-Yu Chen and Zhen-Ying Zhao
1. Introduction 447
1.1 Push-Pull Framework 448
1.2 Available to Promise (ATP) 449
2. Business Examples 449
2.1 Overview of Conventional ATP 449
2.2 Toshiba Electronic Product ATP System 451
2.3 Dell Two-stage Order Promising Practice 452
2.4 Maxtor ATP Execution for Hard Disk Drive 453
2.5 ATP Functionality in Commercial Software 454
3. ATP Modelling Issues 455
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>ATP Implementation Dimensions</td>
<td>455</td>
</tr>
<tr>
<td>3.2</td>
<td>Factors Affecting ATP Implementations</td>
<td>456</td>
</tr>
<tr>
<td>3.3</td>
<td>Push vs. Pull ATP Models</td>
<td>459</td>
</tr>
<tr>
<td>4.1</td>
<td>Push-Based ATP Models</td>
<td>461</td>
</tr>
<tr>
<td>4.2</td>
<td>Deterministic Optimization-Based Push ATP Models</td>
<td>463</td>
</tr>
<tr>
<td>4.3</td>
<td>Stochastic Push ATP Models</td>
<td>467</td>
</tr>
<tr>
<td>5.1</td>
<td>Pull-Based ATP Models</td>
<td>469</td>
</tr>
<tr>
<td>5.2</td>
<td>Real Time Order Promising and Scheduling</td>
<td>470</td>
</tr>
<tr>
<td>5.3</td>
<td>Optimization-Based Batch ATP Models</td>
<td>473</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Implementation</td>
<td>477</td>
</tr>
<tr>
<td>4.1</td>
<td>Push ATP Rules and Policy Analysis</td>
<td>462</td>
</tr>
<tr>
<td>4.2</td>
<td>Deterministic Optimization-Based Push ATP Models</td>
<td>463</td>
</tr>
<tr>
<td>4.3</td>
<td>Stochastic Push ATP Models</td>
<td>467</td>
</tr>
<tr>
<td>5.1</td>
<td>Pull-Based ATP Models</td>
<td>469</td>
</tr>
<tr>
<td>5.2</td>
<td>Real Time Order Promising and Scheduling</td>
<td>470</td>
</tr>
<tr>
<td>5.3</td>
<td>Optimization-Based Batch ATP Models</td>
<td>473</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Implementation</td>
<td>477</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusions</td>
<td>480</td>
</tr>
</tbody>
</table>

Chapter 12
Due Date Management Policies
Pınar Keskinocak and Sridhar Tayur

1. Characteristics of a Due Date Management Problem 487
 1.1 Due Date Management Decisions 487
 1.2 Dimensions of a Due Date Management Problem 489
 1.3 Objectives of Due Date Management 490
 1.4 Solution Approaches for Due Date Management Problems 494
2. Scheduling Policies in Due Date Management 494
3. Offline Models for Due Date Management 499
 3.1 Equal Order Arrival Times 500
 3.2 Distinct Order Arrival Times 501
4. Online Models for Due Date Management 503
 4.1 Due-Date Setting Rules 506
 4.2 Choosing the Parameters of Due Date Rules 520
 4.3 Mathematical Models for Setting Due Dates 521
5. Due Date Management with Service Constraints 523
6. Due Date Management with Price and Order Selection Decisions 530
 6.1 Due Date Management with Order Selection Decisions (DDM-OS) 531
 6.2 Due Date Management with Price and Order Selection Decisions (DDM-P) 536
7. Conclusions and Future Research Directions 542

References 547

Part IV Multi-Channel Coordination
Chapter 13
Modeling Conflict and Coordination in Multi-channel Distribution Systems: A Review
Andy A. Tsay and Narendra Agrawal

1. Introduction 557
 1.1 Business Setting 557

References 557
Contents

1.2 Scope of Discussion 559
1.3 Contribution 561

2. Related Literature 562
2.1 Descriptive research 562
2.2 Analytical research 564

3. Analytical Research on Conflict and Coordination in Multi-Channel Systems With Both Manufacturer-Owned And Intermediated Channels 571
3.1 Manufacturer-owned channel is direct sales 574
3.2 Manufacturer-owned channel contains physical stores 582
3.3 Discussion 585

4. Research Opportunities 586
4.1 Representing channel characteristics 586
4.2 Evaluating distribution strategies 594
4.3 Concluding remarks 595

Acknowledgments 595
References 597

Chapter 14
Supply chain structures on the Internet and the role of marketing-operations interaction
Serguei Netessine and Nils Rudi
1. Introduction 607
2. Literature survey 611
3. Notation and modeling assumptions 614
4. Supply chain models without coordination 616
4.1 Model I - vertically integrated supply chain 616
4.2 Model T - traditional supply chain 618
4.3 Model D - drop-shipping 619
4.4 Comparative analysis of the stationary policies 625
5. Supply chain coordination 629
6. Numerical experiments 632
7. Conclusions and discussion 636
References 639

Chapter 15
Coordinating Traditional and Internet Supply Chains 643
Kyle D. Cattani, Wendell G. Gilland and Jayashankar M. Swaminathan
1. Introduction 643
1.1 Overview of Research 644
1.2 Procurement 644
1.3 Pricing 646
1.4 Distribution / Fulfillment 647
2. Procurement 648
2.1 Coordinating Traditional and Internet Procurement 648
2.2 Formation of Consortia 655
3. Pricing 656
3.1 Independent Competition 656
3.2 Bricks and Clicks 660
3.3 Forward Integration 665
3.4 Full Integration 668
4. Distribution / Fulfilment 668