WATER-RESOURCES ENGINEERING

Third Edition

David A. Chin
To Andrew and Stephanie.

“But those who hope in the Lord will renew their strength. They will soar on wings like eagles; they will run and not grow weary, they will walk and not be faint.”

Isaiah 40:31
Contents

Preface
Preface

1 **Introduction**
1.1 Water-Resources Engineering
1.2 The Hydrologic Cycle
1.3 Design of Water-Resource Systems
1.3.1 Water-Control Systems
1.3.2 Water-Use Systems
1.3.3 Supporting Federal Agencies in the United States
Problem

2 **Fundamentals of Flow in Closed Conduits**
2.1 Introduction
2.2 Single Pipelines
2.2.1 Steady-State Continuity Equation
2.2.2 Steady-State Momentum Equation
2.2.3 Steady-State Energy Equation
2.2.3.1 Energy and hydraulic grade lines
2.2.3.2 Velocity profile
2.2.3.3 Head losses in transitions and fittings
2.2.3.4 Head losses in noncircular conduits
2.2.3.5 Empirical friction-loss formulae
2.2.4 Water Hammer
2.3 Pipe Networks
2.3.1 Nodal Method
2.3.2 Loop Method
2.3.3 Application of Computer Programs
2.4 Pumps
2.4.1 Affinity Laws
2.4.2 Pump Selection
2.4.2.1 Commercially available pumps
2.4.2.2 System characteristics
2.4.2.3 Limits on pump location
2.4.3 Multiple-Pump Systems
2.4.4 Variable-Speed Pumps
Problems

3 **Design of Water-Distribution Systems**
3.1 Introduction
3.2 Water Demand
3.2.1 Per-Capita Forecast Model
3.2.1.1 Estimation of per-capita demand
3.2.1.2 Estimation of population
3.2.2 Temporal Variations in Water Demand
3.2.3 Fire Demand
3.2.4 Design Flows
3.3 Components of Water-Distribution Systems
3.3.1 Pipelines
3.3.1.1 Minimum size
3.3.1.2 Service lines
3.3.1.3 Pipe materials

Contents

3.3.2 Pumps 85
3.3.3 Valves 85
3.3.4 Meters 85
3.3.5 Fire Hydrants 86
3.3.6 Water-Storage Reservoirs 87
3.4 Performance Criteria for Water-Distribution Systems 90
 3.4.1 Service Pressures 91
 3.4.2 Allowable Velocities 91
 3.4.3 Water Quality 91
 3.4.4 Network Analysis 92
3.5 Building Water-Supply Systems 93
 3.5.1 Specification of Design Flows 94
 3.5.2 Specification of Minimum Pressures 94
 3.5.3 Determination of Pipe Diameters 96
Problems ... 101

4 Fundamentals of Flow in Open Channels 103
 4.1 Introduction 103
 4.2 Basic Principles 103
 4.2.1 Steady-State Continuity Equation 103
 4.2.2 Steady-State Momentum Equation 104
 4.2.2.1 Darcy–Weisbach equation 106
 4.2.2.2 Manning equation 110
 4.2.2.3 Other equations 119
 4.2.2.4 Velocity distribution 120
 4.2.3 Steady-State Energy Equation 121
 4.2.3.1 Energy grade line 125
 4.2.3.2 Specific energy 125
 4.3 Water-Surface Profiles 132
 4.3.1 Profile Equation 132
 4.3.2 Classification of Water-Surface Profiles 134
 4.3.3 Hydraulic Jump 139
 4.3.4 Computation of Water-Surface Profiles 143
 4.3.4.1 Direct-integration method 145
 4.3.4.2 Direct-step method 147
 4.3.4.3 Standard-step method 148
 4.3.4.4 Practical considerations 150
 4.3.4.5 Profiles across bridges 154
Problems ... 159

5 Design of Drainage Channels 166
 5.1 Introduction 166
 5.2 Basic Principles 167
 5.2.1 Best Hydraulic Section 167
 5.2.2 Boundary Shear Stress 170
 5.2.3 Cohesive versus Noncohesive Materials 172
 5.2.4 Bends 177
 5.2.5 Channel Slopes 178
 5.2.6 Freeboard 178
 5.3 Design of Channels with Rigid Linings 180
 5.4 Design of Channels with Flexible Linings 182
 5.4.1 General Design Procedure 183
 5.4.2 Vegetative Linings and Bare Soil 187
 5.4.3 RECP Linings 197
 5.4.4 Riprap, Cobble, and Gravel Linings 199
 5.4.5 Gabions 203

Contents

5.5 Composite Linings .. 205
Problems .. 208

6 Design of Sanitary Sewers ... 211
 6.1 Introduction .. 211
 6.2 Quantity of Wastewater ... 211
 6.2.1 Residential Sources .. 211
 6.2.2 Nonresidential Sources 212
 6.2.3 Inflow and Infiltration (I/I) 213
 6.2.4 Peaking Factors .. 214
 6.3 Hydraulics of Sewers ... 216
 6.3.1 Manning Equation with Constant \(n \) 218
 6.3.2 Manning Equation with Variable \(n \) 220
 6.3.3 Self-Cleansing .. 223
 6.3.4 Scour Prevention .. 224
 6.3.5 Design Computations for Diameter and Slope 224
 6.3.6 Hydraulics of Manholes 227
 6.4 System Design Criteria ... 229
 6.4.1 System Layout ... 229
 6.4.2 Pipe Material ... 229
 6.4.3 Depth of Sanitary Sewer 231
 6.4.4 Diameter and Slope of Pipes 231
 6.4.5 Hydraulic Criteria 231
 6.4.6 Manholes ... 231
 6.4.7 Pump Stations ... 233
 6.4.8 Force Mains ... 233
 6.4.9 Hydrogen-Sulfide Control 234
 6.4.10 Combined Sewers ... 236
 6.5 Design Computations .. 236
 6.5.1 Design Aids ... 237
 6.5.1.1 Manning’s \(n \) 237
 6.5.1.2 Minimum slope for self-cleansing 237
 6.5.2 Procedure for System Design 240
Problems .. 247

7 Design of Hydraulic Structures 250
 7.1 Introduction .. 250
 7.2 Culverts .. 250
 7.2.1 Hydraulics .. 250
 7.2.1.1 Submerged entrances 252
 7.2.1.2 Unsubmerged entrances 259
 7.2.2 Design Constraints ... 262
 7.2.3 Sizing Calculations .. 264
 7.2.3.1 Fixed-headwater method 265
 7.2.3.2 Fixed-flow method 269
 7.2.3.3 Minimum-performance method 271
 7.2.4 Roadway Overtopping 271
 7.2.5 Riprap/Outlet Protection 274
 7.3 Gates ... 275
 7.3.1 Free Discharge ... 276
 7.3.2 Submerged Discharge 279
 7.3.3 Empirical Equations 281
 7.4 Weirs .. 282
 7.4.1 Sharp-Crested Weirs 282
 7.4.1.1 Rectangular weirs 282
 7.4.1.2 V-notch weirs 288

Contents

7.4.1.3 Compound weirs 291
7.4.1.4 Other types of sharp-crested weirs 293
7.4.2 Broad-Crested Weirs 294
7.4.2.1 Rectangular weirs 294
7.4.2.2 Compound weirs 297
7.4.2.3 Gabion weirs 298
7.5 Spillways ... 299
7.5.1 Uncontrolled Spillways 299
7.5.2 Controlled (Gated) Spillways 307
7.5.2.1 Gates seated on the spillway crest 308
7.5.2.2 Gates seated downstream of the spillway crest .. 309
7.6 Stilling Basins ... 312
7.6.1 Type Selection 312
7.6.2 Design Procedure 314
7.7 Dams and Reservoirs 318
7.7.1 Types of Dams 319
7.7.2 Reservoir Storage 322
7.7.2.1 Sediment accumulation 323
7.7.2.2 Determination of storage requirements 326
7.7.3 Hydropower ... 328
7.7.3.1 Turbines .. 328
7.7.3.2 Turbine performance 333
7.7.3.3 Feasibility of hydropower 334
Problems .. 335

8 Probability and Statistics in Water-Resources Engineering

8.1 Introduction .. 344
8.2 Probability Distributions 345
8.2.1 Discrete Probability Distributions 345
8.2.2 Continuous Probability Distributions 346
8.2.3 Mathematical Expectation and Moments 347
8.2.4 Return Period 350
8.2.5 Common Probability Functions 351
8.2.5.1 Binomial distribution 351
8.2.5.2 Geometric distribution 353
8.2.5.3 Poisson distribution 354
8.2.5.4 Exponential distribution 356
8.2.5.5 Gamma/Pearson Type III distribution 357
8.2.5.6 Normal distribution 360
8.2.5.7 Log-normal distribution 362
8.2.5.8 Uniform distribution 363
8.2.5.9 Extreme-value distributions 364
8.2.5.10 Chi-square distribution 371
8.3 Analysis of Hydrologic Data 372
8.3.1 Estimation of Population Distribution 372
8.3.1.1 Probability distribution of observed data 372
8.3.1.2 Hypothesis tests 376
8.3.1.3 Model selection criteria 379
8.3.2 Estimation of Population Parameters 379
8.3.2.1 Method of moments 379
8.3.2.2 Maximum-likelihood method 382
8.3.2.3 Method of L-moments 383
8.3.3 Frequency Analysis 387
8.3.3.1 Normal distribution 388
8.3.3.2 Log-normal distribution 389
8.3.3.3 Gamma/Pearson Type III distribution 390
Contents

8.3.3.4 Log-Pearson Type III distribution 391
8.3.3.5 Extreme-value Type I distribution 393
8.3.3.6 General extreme-value (GEV) distribution 394

8.4 Uncertainty Analysis .. 395
Problems .. 397

9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions 401

9.1 Introduction .. 401
9.2 Rainfall .. 401
9.2.1 Measurement of Rainfall 403
9.2.2 Statistics of Rainfall Data 405
 9.2.2.1 Rainfall statistics in the United States 410
 9.2.2.2 Secondary estimation of IDF curves 410
9.2.3 Spatial Averaging and Interpolation of Rainfall 416
9.2.4 Design Rainfall .. 421
 9.2.4.1 Return period 421
 9.2.4.2 Rainfall duration 422
 9.2.4.3 Rainfall depth 422
 9.2.4.4 Temporal distribution 422
 9.2.4.5 Spatial distribution 428
9.2.5 Extreme Rainfall 429
 9.2.5.1 Rational estimation method 430
 9.2.5.2 Statistical estimation method 430
 9.2.5.3 World-record precipitation amounts 432
 9.2.5.4 Probable maximum storm 432
9.3 Rainfall Abstractions 433
 9.3.1 Interception .. 433
 9.3.2 Depression Storage 437
 9.3.3 Infiltration .. 437
 9.3.3.1 The infiltration process 439
 9.3.3.2 Horton model 442
 9.3.3.3 Green–Ampt model 447
 9.3.3.4 NRCS curve-number model 453
 9.3.3.5 Comparison of infiltration models 460
 9.3.4 Rainfall Excess on Composite Areas 461
9.4 Baseflow .. 464
Problems .. 468

10 Fundamentals of Surface-Water Hydrology II: Runoff 473

10.1 Introduction .. 473
10.2 Mechanisms of Surface Runoff 473
10.3 Time of Concentration 474
 10.3.1 Overland Flow .. 474
 10.3.1.1 Kinematic-wave equation 474
 10.3.1.2 NRCS method 478
 10.3.1.3 Kirpich equation 481
 10.3.1.4 Izzard equation 481
 10.3.1.5 Kerby equation 482
 10.3.2 Channel Flow ... 484
 10.3.3 Accuracy of Estimates 486
10.4 Peak-Runoff Models 487
 10.4.1 The Rational Method 487
 10.4.2 NRCS-TR55 Method 492
10.5 Continuous-Runoff Models 495
 10.5.1 Unit-Hydrograph Theory 495
 10.5.2 Instantaneous Unit Hydrograph 501
Contents

10.5.3 Unit-Hydrograph Models .. 502
 10.5.3.1 Snyder unit-hydrograph model 503
 10.5.3.2 NRCS dimensionless unit hydrograph 506
 10.5.3.3 Accuracy of unit-hydrograph models 509
10.5.4 Time-Area Models .. 509
10.5.5 Kinematic-Wave Model .. 514
10.5.6 Nonlinear-Reservoir Model 515
10.5.7 Santa Barbara Urban Hydrograph Model 517
10.5.8 Extreme Runoff Events .. 519
10.6 Routing Models ... 520
 10.6.1 Hydrologic Routing .. 520
 10.6.1.1 Modified Puls method 520
 10.6.1.2 Muskingum method 524
 10.6.2 Hydraulic Routing .. 531
10.7 Water-Quality Models ... 533
 10.7.1 Event-Mean Concentrations 533
 10.7.2 Regression Equations .. 535
 10.7.2.1 USGS model .. 535
 10.7.2.2 EPA model .. 537
Problems .. 539

11 Design of Stormwater-Collection Systems 545
 11.1 Introduction .. 545
 11.2 Street Gutters .. 545
 11.3 Inlets ... 549
 11.3.1 Curb Inlets ... 550
 11.3.2 Grate Inlets ... 554
 11.3.3 Combination Inlets ... 560
 11.3.4 Slotted Inlets .. 565
 11.4 Roadside and Median Channels 566
 11.5 Storm Sewers .. 567
 11.5.1 Calculation of Design Flow Rates 568
 11.5.2 Pipe Sizing and Selection 571
 11.5.3 Manholes .. 576
 11.5.4 Determination of Impervious Area 577
 11.5.5 System-Design Computations 578
 11.5.6 Other Design Considerations 583
Problems .. 584

12 Design of Stormwater-Management Systems 586
 12.1 Introduction .. 586
 12.2 Performance Goals ... 586
 12.2.1 Quantity Control .. 586
 12.2.2 Quality Control .. 586
 12.3 Design of Stormwater Control Measures 587
 12.3.1 Storage Impoundments .. 587
 12.3.1.1 Detention basins—Design parameters 588
 12.3.1.2 Wet detention basins 590
 12.3.1.3 Dry detention basins 592
 12.3.1.4 Design of outlet structures 593
 12.3.1.5 Design for flood control 599
 12.3.2 Infiltration Basins ... 603
 12.3.3 Swales .. 605
 12.3.3.1 Retention swales 606
 12.3.3.2 Biofiltration swales 607
 12.3.4 Vegetated Filter Strips 610
Contents

12.3.5 Bioretention Systems .. 610
12.3.6 Exfiltration Trenches .. 612
12.3.6.1 General design guidelines 613
12.3.6.2 Design for flood control 614
12.3.6.3 Design for water-quality control 616
12.3.7 Subsurface Exfiltration Galleries 617
12.4 Selection of SCMs for Water-Quality Control 618
12.4.1 Nonstructural SCMs .. 618
12.4.2 Structural SCMs ... 618
12.4.3 Other Considerations 619
12.5 Major Drainage System .. 619
Problems ... 619

13 Estimation of Evapotranspiration 624
13.1 Introduction ... 624
13.2 Penman–Monteith Equation 624
13.2.1 Aerodynamic Resistance 625
13.2.2 Surface Resistance ... 626
13.2.3 Net Radiation .. 627
13.2.3.1 Shortwave radiation 627
13.2.3.2 Longwave radiation 629
13.2.4 Soil Heat Flux .. 630
13.2.5 Latent Heat of Vaporization 631
13.2.6 Psychrometric Constant 631
13.2.7 Saturation Vapor Pressure 632
13.2.8 Vapor-Pressure Gradient 632
13.2.9 Actual Vapor Pressure 632
13.2.10 Air Density ... 633
13.3 Application of the PM Equation 634
13.4 Potential Evapotranspiration 637
13.5 Reference Evapotranspiration 638
13.5.1 FAO56-Penman–Monteith Method 639
13.5.2 ASCE Penman–Monteith Method 643
13.5.3 Evaporation Pans .. 644
13.5.4 Empirical Methods ... 648
13.6 Actual Evapotranspiration 651
13.6.1 Index-of-Dryness Method 651
13.6.2 Crop-Coefficient Method 653
13.6.3 Remote Sensing ... 653
13.7 Selection of ET Estimation Method 654
Problems ... 654

14 Fundamentals of Groundwater Hydrology I: Governing Equations 656
14.1 Introduction ... 656
14.2 Darcy’s Law .. 662
14.2.1 Hydraulic Conductivity 666
14.2.1.1 Empirical formulae 666
14.2.1.2 Classification .. 670
14.2.1.3 Anisotropic properties 670
14.2.1.4 Stochastic properties 674
14.3 General Flow Equation ... 676
14.4 Two-Dimensional Approximations 681
14.4.1 Unconfined Aquifers ... 681
14.4.2 Confined Aquifers .. 687
14.5 Flow in the Unsaturated Zone 691
Problems ... 696
15 Fundamentals of Groundwater Hydrology II: Applications

15.1 Introduction ... 700
15.2 Steady-State Solutions 700
 15.2.1 Unconfined Flow Between Two Reservoirs 700
 15.2.2 Well in a Confined Aquifer 702
 15.2.3 Well in an Unconfined Aquifer 706
 15.2.4 Well in a Leaky Confined Aquifer 709
 15.2.5 Well in an Unconfined Aquifer with Recharge ... 713
 15.2.6 Partially Penetrating Wells 714
15.3 Unsteady-State Solutions 718
 15.3.1 Well in a Confined Aquifer 718
 15.3.2 Well in an Unconfined Aquifer 722
 15.3.3 Well in a Leaky Confined Aquifer 736
 15.3.4 Other Solutions 741
15.4 Principle of Superposition 741
 15.4.1 Multiple Wells 742
 15.4.2 Well in Uniform Flow 744
15.5 Method of Images 746
 15.5.1 Constant-Head Boundary 746
 15.5.2 Impermeable Boundary 750
 15.5.3 Other Applications 752
15.6 Saltwater Intrusion 752
Problems ... 761

16 Design of Groundwater Systems

16.1 Introduction ... 771
16.2 Design of Wellfields 771
16.3 Wellhead Protection 774
 16.3.1 Delineation of Wellhead Protection Areas 774
 16.3.2 Time-of-Travel Approach 775
16.4 Design and Construction of Water-Supply Wells 777
 16.4.1 Types of Wells 777
 16.4.2 Design of Well Components 778
 16.4.2.1 Casing 779
 16.4.2.2 Screen intake 779
 16.4.2.3 Gravel pack 783
 16.4.2.4 Pump .. 784
 16.4.2.5 Other considerations 785
 16.4.3 Performance Assessment 788
 16.4.4 Well Drilling 793
16.5 Design of Aquifer Pumping Tests 794
 16.5.1 Pumping Well 794
 16.5.2 Observation Wells 795
 16.5.3 Field Procedures 796
16.6 Design of Slug Tests 798
16.7 Design of Exfiltration Trenches 803
16.8 Seepage Meters 808
Problems ... 809

17 Water-Resources Planning

17.1 Introduction ... 815
17.2 Planning Process 815
17.3 Economic Feasibility 818
 17.3.1 Compound-Interest Factors 819
 17.3.1.1 Single-payment factors 819
 17.3.1.2 Uniform-series factors 820
Contents

17.3.1.3 Arithmetic-gradient factors .. 820
17.3.1.4 Geometric-gradient factors ... 821
17.3.2 Evaluating Alternatives .. 823
 17.3.2.1 Present-worth analysis .. 823
 17.3.2.2 Annual-worth analysis .. 825
 17.3.2.3 Rate-of-return analysis .. 825
 17.3.2.4 Benefit–cost analysis .. 828
Problems ... 829

A Units and Conversion Factors ... 831
 A.1 Units .. 831
 A.2 Conversion Factors ... 832

B Fluid Properties .. 834
 B.1 Water ... 834
 B.2 Organic Compounds Found in Water 834
 B.3 Air at Standard Atmospheric Pressure 836

C Statistical Tables .. 837
 C.1 Areas Under Standard Normal Curve 837
 C.2 Frequency Factors for Pearson Type III Distribution 839
 C.3 Critical Values of the Chi-Square Distribution 841
 C.4 Critical Values for the Kolmogorov–Smirnov Test Statistic ... 842

D Special Functions .. 843
 D.1 Error Function .. 843
 D.2 Bessel Functions ... 844
 D.2.1 Definition ... 844
 D.2.2 Evaluation of Bessel Functions 844
 D.2.2.1 Bessel function of the first kind of order n 844
 D.2.2.2 Bessel function of the second kind of order n 845
 D.2.2.3 Modified Bessel function of the first kind of order n .. 845
 D.2.2.4 Modified Bessel function of the second kind of order n . 845
 D.2.2.5 Tabulated values of useful Bessel functions 845
 D.3 Gamma Function .. 848
 D.4 Exponential Integral ... 849

E Pipe Specifications ... 850
 E.1 PVC Pipe ... 850
 E.2 Ductile-Iron Pipe .. 850
 E.3 Concrete Pipe ... 851
 E.4 Physical Properties of Common Pipe Materials 851

F Unified Soil Classification System .. 852
 F.1 Definition of Soil Groups .. 852
 F.2 Terminology ... 853

Bibliography .. 854

Index ... 912
Preface

Water-resources engineers design systems to control the quantity, quality, timing, and distribution of water to support human habitation and the needs of the environment. Water-supply and flood-control systems are commonly regarded as essential infrastructure for developed areas, and as such water-resources engineering is a core specialty area in civil engineering. Water-resources engineering is also a specialty area in environmental engineering, particularly with regard to the design of water-supply systems, wastewater-collection systems, and water-quality control in natural systems.

The technical and scientific bases for most water-resources applications are in the areas of hydraulics and hydrology, and this text covers these areas with depth and rigor. The fundamentals of closed-conduit flow, open-channel flow, surface-water hydrology, groundwater hydrology, and water-resources planning and management are all covered in detail. Applications of these fundamentals include the design of water-distribution systems, hydraulic structures, sanitary-sewer systems, stormwater-management systems, and water-supply wellfields. The design protocols for these systems are guided by the relevant ASCE, WEF, and AWWA manuals of practice, as well as USFHWA design guidelines for urban and transportation-related drainage structures, and USACE design guidelines for hydraulic structures. The topics covered in this book constitute the technical background expected of water-resources engineers. This text is appropriate for undergraduate and first-year graduate courses in hydraulics, hydrology, and water-resources engineering. Practitioners will also find the material in this book to be a useful reference on appropriate design protocols.

The book has been organized in such a way as to sequentially cover the theory and design applications in each of the key areas of water-resources engineering. The theory of flow in closed conduits is covered in Chapter 2, including applications of the continuity, momentum, and energy equations to flow in closed conduits, calculation of water-hammer pressures, flows in pipe networks, affinity laws for pumps, pump performance curves, and procedures for pump selection and assessing the performance of multi-pump systems. The design of public water-supply systems and building water-supply systems are covered in Chapter 3, which includes the estimation of water demand, design of pipelines, pipeline appurtenances, service reservoirs, performance criteria for water-distribution systems, and several practical design examples. The theory of flow in open channels is covered in Chapter 4, which includes applications of the continuity, momentum, and energy equations to flow in open channels, and computation of water-surface profiles. The design of drainage channels is covered in Chapter 5, which includes the application of design standards for determining the appropriate channel dimensions for various channel linings, including vegetative and non-vegetative linings. The design of sanitary-sewer systems is covered in Chapter 6, which includes design approaches for estimating the quantity of wastewater to be handled by sewers; sizing sewer pipes based on self-cleansing and capacity using the ASCE-recommended tractive-force method; and the performance of manholes, force mains, pump stations, and hydrogen-sulfide control systems are also covered. Design of the most widely used hydraulic structures is covered in Chapter 7, which includes the design of culverts, gates, weirs, spillways, stilling basins, and dams. This chapter is particularly important since most water-resources projects rely on the performance of hydraulic structures to achieve their objectives. The bases for the design of water-resources systems are typically rainfall and/or surface runoff, which are random variables that must generally be specified probabilistically. Applications of probability and statistics in water-resources engineering are covered in detail in Chapter 8, with particular emphasis on the analysis of hydrologic data and uncertainty analysis in predicting hydrologic variables. The fundamentals of surface-water hydrology are covered in Chapters 9 and 10. These chapters cover the statistical characterization of rainfall for design applications, methodologies for estimating peak runoff and runoff hydrographs, methodologies for routing runoff hydrographs through detention basins, and methods for estimating the quality of surface runoff. The design of stormwater-collection systems is covered in Chapter 11,
Preface

including the design of stormwater inlets and storm sewers. Stormwater-management systems are designed to treat stormwater prior to discharge into receiving waters, and the design of these systems is covered in Chapter 12. Several state-of-the-art design examples for the most commonly used stormwater-control measures are provided, including the design of infiltration basins, swales, filter strips, bioretention systems, and exfiltration trenches. The estimation of evapotranspiration, which is usually the dominant component of seasonal and annual water budgets in arid areas and a core component in the design of irrigation systems, is covered in Chapter 13. The fundamentals of groundwater hydrology are covered in Chapters 14 and 15, including an exposition on Darcy’s law, derivation of the general groundwater flow equation, practical solutions to the groundwater flow equation, and methods to assess and control saltwater intrusion in coastal aquifers. Applications of groundwater hydrology to the design of wellfields, the delineation of wellhead protection areas, and the design of wells, aquifer pumping tests, slug tests, and exfiltration trenches are all covered. Water-resources planning typically includes identifying alternatives and ranking the alternatives based on specified criteria. Chapter 17 covers the conventional approaches for identifying and ranking alternatives and the bases for the economic evaluation of these alternatives.

In summary, this book provides an in-depth coverage of the subject areas that are fundamental to the practice of water-resources engineering. A firm grasp of the material covered in this book along with complementary practical experience are the foundations on which water-resources engineering is practiced at the highest level. Throughout the entire textbook, equations contained within boxes represent derived equations that are particularly useful in engineering applications. In contrast, equations without boxes are typically intermediate equations within an analysis leading to a derived useful equation.

This book is a reflection of the author’s belief that water-resources engineers must gain a firm understanding of the depth and breadth of the technical areas that are fundamental to their discipline, and by so doing will be more innovative, view water-resource systems holistically, and be technically prepared for a lifetime of learning. On the basis of this vision, the material contained in this book is presented mostly from first principles, is rigorous, is relevant to the practice of water-resources engineering, and is reinforced by detailed presentations of design applications.

Many persons have contributed in various ways to this book and to my understanding of water-resources engineering, and to recognize all of those who have helped me along the way would be a book onto itself. However, special recognition is deserved by Professor LaVere Merritt of Brigham Young University for his expert advice and detailed review of the chapter on design of sanitary sewers and Professor Dixie Griffin of Louisiana Tech for his extensive feedback and constructive comments throughout the years on the present and previous editions of this book. I am also grateful to Professors John Miknis of Pennsylvania State University, Jacob Ogaard of the University of Iowa, Francisco Olivera of Texas A&M University, and Ken Lee of the University of Massachusetts Lowell, for reviewing this book.

What’s New in the Third Edition

The third edition of this book contains much new and updated material and is significantly reorganized relative to the previous edition. The most notable changes are as follows:

- The book contains 17 chapters compared to 7 chapters in the previous edition. In the previous edition, most of the chapters were quite long and contained both theory and practical examples. In the present edition, theory-oriented chapters have been separated from practice-oriented chapters. The material in all chapters has been revised and updated, with some chapters being almost entirely rewritten as described below.

- Coverage of the design of drainage channels (Chapter 5) has been completely rewritten. Subsequent to the previous edition of the book, the Federal Highway Administration thoroughly revised their urban drainage design manual, Hydraulic Engineering Circular No.22 (HEC-22), which provides the primary design guidelines for the design of drainage channels in the United States. The updated chapter in this book is consistent with the latest edition of HEC-22. Appendix F describing the unified soil classification system has been added to support the design applications contained in this chapter.

Coverage of the design of sanitary-sewers (Chapter 6) has been completely rewritten to be consistent with the latest version of the ASCE Manual of Practice No.60 (MOP 60) on the design of sanitary sewers. The latest version of MOP 60 is a significant departure from previous versions of MOP 60 in that the tractive-force design approach is now recommended as the preferred approach for designing sanitary sewers. The updated chapter emphasizes the tractive-force approach and contains the key design aids provided in ASCE Manual of Practice No.60.

Coverage of the design of stormwater-management systems (Chapter 12) has been significantly revised and updated. Over the past several years, much has been learned about the performance and design of various stormwater control measures (SCMs) and the latest design approaches to these systems are incorporated in the revised chapter. These design approaches are consistent with the latest version of ASCE Manual of Practice No.87.

In addition to updating the coverage on most topics covered in the book, several new topics have been added. For example, coverage of water hammer, variable-speed pumps, water-surface profiles across bridges, design of dams and reservoirs, and uncertainty analysis have all been added.

Many new end-of-chapter problems have been added to support the revised coverage in the book, and several problems from the previous edition have been removed or modified.

In summary, this new edition reflects the state-of-the-art of water-resources engineering and is intended provide the necessary competencies expected by the profession. The redesigned chapters, which are shorter in length than previous chapters, are intended to provide a more focused treatment of individual cognate topics and hence contribute to more effective learning by those using this textbook.

DAVID A. CHIN