TRAFFIC ENGINEERING HANDBOOK
Fifth Edition

James L. Pline
Editor

Institute of Transportation Engineers
The Institute of Transportation Engineers (ITE) is an international educational and scientific association of transportation and traffic engineers and other professionals who are responsible for meeting mobility and safety needs. The Institute facilitates the application of technology and scientific principles to research, planning, functional design, implementation, operation, policy development and management for any mode of transportation by promoting professional development of members, supporting and encouraging education, stimulating research, developing public awareness, and exchanging professional information; and by maintaining a central point of reference and action.

Founded in 1930, the Institute serves as a gateway to knowledge and advancement through meetings, seminars, and publications; and through our network of more than 17,000 members working in some 92 countries.

The electronic online versions of all ITE resources and information have the same copyright as the printed version; your purchase is for your use only, electronic or printed versions of ITE resources may not be shared with others without express written permission from ITE. You may use an E-Document on your computer and/or print it; however, it is illegal to email ITE E-Documents or to print and distribute multiple copies.
Contents

PREFACE ... xi
ACKNOWLEDGMENTS ... xii

1 INTRODUCTION TO TRAFFIC ENGINEERING 1
 James L. Pline
 What is Traffic Engineering? 1
 ITE’s Role .. 2
 Scope of the Publication 2
 The Relationship Between the Handbooks 3

2 ROAD USERS ... 4
 Robert Dewar
 Introduction ... 4
 Driver Requirements ... 4
 Driver Characteristics and Limitations 6
 Work Zone Safety .. 29
 Truck Drivers .. 30
 Motorcyclists ... 32
 Vehicle Design .. 33
 Pedestrians .. 36
 References for Further Reading 49

3 VEHICLES ... 50
 William D. Glauz and Douglas W. Harwood
 Overview ... 50
 Vehicle Types and Dimensions 51
 Vehicle Use ... 54
 Design Vehicles .. 54
 Turning Radii and Offtracking 55
 Resistance to Motion ... 57
 Power Requirements .. 60
 Acceleration Rates .. 62
 Deceleration Performance 65
 Vehicle Operating Costs 68
 Transit and Buses .. 71
 Bicycles .. 74
 References for Further Reading 76
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Subtitles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>TRAFFIC AND FLOW CHARACTERISTICS</td>
<td>Michael Kyte and Stan Teply</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Basic Variables of Traffic Flow</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Capacity and Level of Service</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Observed Values</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>References for Further Reading</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>PROBABILITY AND STATISTICS FOR ENGINEERS</td>
<td>Simon Washington</td>
</tr>
<tr>
<td></td>
<td>Probability and Statistics Context and Terminology</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Probability Distributions and Hypothesis Testing</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Issues in the Design of Engineering Field Studies</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>References for Further Reading</td>
<td>164</td>
</tr>
<tr>
<td>6</td>
<td>EFFECTIVE PUBLIC INVOLVEMENT</td>
<td>Patricia B. Noyes</td>
</tr>
<tr>
<td></td>
<td>The Changing Environment of Transportation Engineering</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>The Role of the Public in Traffic Engineering</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Who Is the Public?</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>The Myth of Technically Compelling Solutions</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Building Consensus</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Effective Communication</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Conflict Management</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Involving the Public</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Partnering and Interagency Coordination</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Public Information</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Maintaining Consensus and Professional Commitment</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>References for Further Reading</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>COMMUNITY SAFETY</td>
<td>Timothy Scott Bochum and Toan Nguyen</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>The Basic Structure of Traditional Transportation Safety</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Traffic-Data Analysis</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Community-Oriented Safety Programs</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Major Areas and Components of a Safety Management System</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>“Taking Stock”</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>CTSP Implementation</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Safety Education and Marketing</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Balancing the Pros and Cons</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>References for Further Reading</td>
<td>217</td>
</tr>
</tbody>
</table>
8 TRAFFIC REGULATION AND CONTROL ... 219
 Kay Fitzpatrick and Gerald Ullman
 Introduction .. 219
 Lane Regulation and Control ... 223
 Intersection Regulation and Control 235
 Speed Regulations ... 244
 Emergency Condition Regulations and Control 252
 References for Further Reading 256

9 TRAFFIC CALMING APPLICATIONS ... 257
 Andrew P. O’Brien and Raymond E. Brindle
 Background .. 257
 Traffic Calming in Context ... 259
 Implications of the Wider View of Traffic Calming 260
 Strategic Context ... 263
 Processes .. 266
 Level I Traffic Calming .. 268
 Assessment of Level I Traffic Calming 285
 Alternatives to NTM .. 289
 Regulatory, Legal, and Performance Frameworks 292
 Level II Traffic Calming .. 294
 Level III (Metropolitan) Traffic Calming 299
 References for Further Reading 305

10 ACCESS MANAGEMENT ... 306
 Frank J. Koepke
 Introduction .. 306
 Access Management Policies and Regulations 307
 Access Design Principles .. 312
 Intersection Design Concepts 327
 Retrofit Programs .. 342
 Access Management Programs 345
 References for Further Reading 347

11 GEOMETRIC DESIGN OF HIGHWAYS 348
 Timothy R. Neuman and Richard Stafford
 Introduction .. 348
 Geometric Design Process .. 350
 Elements of Geometric Highway Design 364
 Highway Types ... 391
 Summary of Geometric Design 409
 References for Further Reading 410
12 TRAFFIC SIGNS AND MARKINGS411

Robert R. Canfield

Introduction411
Special Considerations414
Traffic Signs .. .415
Special Signing Considerations423
Sign Location, Mounting, and Support425
Pavement Markers, Delineators, and Object Markers432
Object Markers and Delineators436
Special Markings .. .438
Channelizing Traffic Control Devices441
Sign and Marking Warrants .. .443
Traffic Marking Warrants446
Sign Materials .. .447
Sign Maintenance .. .448
Pavement Marking Maintenance451
Sign Shop Operations .. .451
References for Further Reading452

13 TRAFFIC CONTROL SIGNALS453

Raymond S. Pusey and George L. Butzer

Introduction453
Related Technical Documents454
Definitions Arranged by Related Usage454
Basis of Installation .. .458
Removal of Traffic Signal Installation462
Cabinet Types and Locations462
Basic Types of Control463
Controller Units465
Signal Operation466
Signal Controller Phasing468
Local Intersection Timing .. .480
Signal Progression and Coordination482
Signal Timing Software484
Signal Systems484
Signal Interconnection Methods488
Traffic Signal Heads and Optical Units491
Vehicle and Pedestrian Signal Illumination Methods496
Pedestrian Signal Heads .. .497
Signal Hardware and Mounting Methods498
Wiring .. .509
Detectors509
Preemption/Priority Control of Traffic Signals520
Temporary and Portable Traffic Control Signals522
TABLE OF CONTENTS

Beacons .. 522
Lane-Use Control Signals 522
Ramp-Metering Signals 524
Control at One-Lane, Two-Way Facilities 524
Signal Monitor Units (Conflict Monitors) 525
Electrical Protection Devices 526
Signal Maintenance 526
References for Further Reading 527
Organizations to Contact 528

14 PARKING AND TERMINALS 529

Willard A. Alroth

Introduction ... 529
Definitions .. 529
Parking Operations Related to Facility Type 530
Design Elements Related to Operations 531
Elements of Good Design 531
Liability Issues .. 546
Parking Lots: Special Elements and Layout Alternatives 547
Access, Fee Collection, and Reservoir Areas 549
End Islands ... 551
Boundary Controls 551
Wheel Stops, Speed Bumps, and Humps 552
Landscaping ... 552
Lighting .. 553
Signs .. 553
Drainage .. 553
Maintenance ... 554
Car Stacking Units 554
Garage Design: Surface Versus Structure Parking .. 554
Site Characteristics, Access, and Layout 556
Use and Operation 557
Interfloor Travel Systems 557
Structural Systems 559
Short Versus Long-Span Construction 560
Underground Garages 561
Mechanical or Elevator Garages 561
Lighting .. 562
Pedestrian Circulation 562
Safety and Surveillance Equipment 563
Fire Protection ... 565
Boundary Protection 566
Drainage and Waterproofing 566
Traffic Management

Thomas Hicks

- Traffic Management—A General Discussion .. 590
- Operational Problems ... 592
- TM Strategies and Solutions ... 598
- TM—Putting It All Together ... 611
- Appendix A: Maryland Standard Operating Procedures Manual 619
- Appendix B: Freeway Incident Detour Plan ... 629
- Appendix C: Roadwork Management Procedures 631
- Appendix D: Accident in Work Zone Procedures 632
- Appendix E: Guidelines for Reporting an Incident 632
- Appendix F: Incident Management Procedures 633
- Appendix G: Interagency Agreement ... 636
- Appendix H: Dynamic Message Sign Use Guidelines 638
- Appendix I: Highway Advisory Radio (HAR) .. 639
- References for Further Reading .. 640

Intelligent Transportation Systems

Gary Euler

- Introduction ... 642
- What is ITS? ... 646
- Important Considerations in Implementing ITS 656
- Experience with ITS Applications ... 676
- Future Directions ... 685
- References for Further Reading .. 688
Preface

When the Institute of Traffic Engineers was created in 1930, one of the key roles the leadership identified for this new organization was to develop and disseminate technical information. Professionals and lay persons alike needed material to provide an objective understanding of transportation issues.

Consequently, in 1939, when ITE had fewer than 200 members, the Institute accepted a proposal from the National Conservation Bureau to prepare the first Traffic Engineering Handbook. This publication became a reality in 1941. It was truly a milestone accomplishment, representing the first book dedicated to the subject of traffic engineering.

The Institute has taken seriously the need to provide objective information pertaining to the state-of-the-art in transportation engineering. The 1941 Traffic Engineering Handbook was subsequently updated in 1950 and 1965. In 1976 and again in 1982, the first and second editions of the Transportation and Traffic Engineering Handbook were prepared. The revised title was a reflection of the broadening perspective being given to traffic engineering by the profession.

In updating the 1982 edition of the Transportation and Traffic Engineering Handbook, the editorial committee realized that the amount of relevant information that warranted inclusion had become extensive. Justification existed to prepare both a Traffic Engineering Handbook and a Transportation Planning Handbook. The initial publication of these two separate Handbooks occurred in 1992.

The editorial committee working on the 1999 update of the Handbooks determined that the practice of preparing two separate Handbooks should be continued. Each Handbook was carefully reviewed for state-of-the-art content and completeness. At the same time, both Handbooks are designed to be stand-alone publications. As a result, some duplication of material is necessary to assure that each Handbook adequately covers the necessary subject matter.

The primary purpose of the Handbooks is to provide practicing professionals and other interested parties with a basic day-to-day source of reference on the proven techniques of the practice. The Handbooks provide guidelines, and are not a documentation of standard practices. Although not intended to be used as textbooks, the Handbooks should serve as a valuable reference source. Each Handbook chapter contains a listing of key references.

The transportation engineering profession continues to broaden in scope. This is reflected by the new chapters in the 1999 editions that were not part of the 1992 editions. The world remains a dynamic place, and transportation continues to be key to economic competitiveness and quality of life. New issues—such as sustainable transportation, smart growth, seamless intermodal systems, innovative financing, and a recognition of the importance of better operating the transportation system—are increasingly becoming a part of what the profession must address. Many of these issues are touched upon in these Handbooks. No doubt the editors of future editions of the Handbooks will have the opportunity to significantly expand on the current knowledge base.

Dennis L. Christiansen, P.E.
Senior Editor

Wolfgang S. Homburger, P.E.
Associate Senior Editor
Acknowledgments

The planning and completion of the Traffic Engineering Handbook was a group effort of the authors, reviewers, editors, copyeditors, and ITE staff. This publication is the result of many hours of cooperation between people across different time zones, locales, and areas of employment. It is a tribute to our modern communications systems and the sharing of knowledge that the work was completed so quickly and successfully. The Handbook effort was organized in 1997 with the major work started following the ITE Annual Meeting. Chapter authors prepared their material in 1998 with the editing and publishing being done in 1999.

The opportunity to work with a diverse group of knowledgeable people is always a privilege and an enlightening experience. The cooperative effort of authors and reviewers to provide a final product on schedule was sincerely appreciated. Please recognize these people when you have an opportunity in your contacts and note their contribution to the knowledge in the profession. The efforts of ITE Headquarters staff in administering the project, guiding the schedule, and overseeing the editing and publishing process made the job much easier. My special thanks goes to Thomas W. Brahms, Shannon Gore Peters, Agneta Melén-Wilmot, and Ann O’Neill.

I must say that I have never worked with a better editorial board. Dennis Christiansen, John Edwards, and Wolf Homburger were very responsive and provided constructive assistance and necessary guidance to finish the Handbook on time and as planned. The opportunity to work with all of these people is sincerely appreciated.

James L. Pline
Editor
Handbook Editorial Committee

Chair: Dennis L. Christiansen

Editors: John D. Edwards, Jr.
 James L. Pline

Associate Editor: Wolfgang S. Homburger

Panel of Chapter Reviewers

Gerson J. Alexander Wayne K. Kittelson James R. Robinson
James C. Barbaresco Chester R. Kropidlowski Edward J. Seymour
Alan M. Clayton David A. Kuemmel Gary H. Sokolow
Olin K. Dart, Jr. Joel P. Leisch Gaye G. Sprague
Phillip Demosthenes Herbert S. Levinson Dennis W. Strong
R. Marshall Elizer, Jr. Jeffrey A. Lindley Dr. Heikke Summala
John E. Fisher Terry A. Little Larry Sutherland
Bruce E. Friedman John M. Mason, Jr. Wayne K. Tanda
John J. Fruin Joseph M. McDermott Carol H. Tanesse
David G. Gerard Francis P. Navin Rod J. Troutbeck
Glenn M. Grigg Jennifer Ogle Rudy Umbs
Jerome W. Hall Martin T. Pietrucha William G. van Gelder
James M. Hunnicutt Weston S. Pringle Stephen N. Van Winkle
Leslie N. Jacobson Colin A. Rayman Scott W. Wainwright
CHAPTER 1
Introduction to Traffic Engineering

James L. Pline, P.E.
President, Pline Engineering, Inc.

Transportation is among the primary factors influencing society and the quality of life. Mobility is an integral component of successful economic development, industry, education, use of recreation facilities, national and international trade, and investment. The vast intermodal network of transportation facilities has created a complex society that depends on the continuing efficiency and economic vitality of freight and passenger services. Transportation engineering is the profession that makes it all work to serve the public, with traffic engineering representing a specific segment of the transportation field. Both are defined in more detail below.

What is Traffic Engineering?
The Institute of Transportation Engineers (ITE) defines transportation and traffic engineering as follows:

Transportation engineering is the application of technology and scientific principles to the planning, functional design, operation, and management of facilities for any mode of transportation in order to provide for the safe, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods.

Traffic engineering is that phase of transportation engineering which deals with the planning, geometric design, and traffic operations of roads, streets and highways, their networks, terminals, abutting lands, and relationships with other modes of transportation.

Although this definition has been in use for some time, it does not address all functions of the profession. The ITE Task Force working on traffic engineering certification found it necessary to provide a more precise definition. Accordingly, it defined traffic engineering as “that branch of engineering which applies technology, science, and human factors to the planning, design, operations and management of roads, streets, bikeways, highways, their networks, terminals, and abutting lands.” The objective of traffic engineering is to provide for the safe, rapid, comfortable, efficient, convenient, and environmentally compatible movement of people, goods, and services.

The functional areas within traffic engineering are described as follows:

Traffic Operations is the science of analysis, review, and application of traffic tools and data systems—including accident and surveillance records—as well as volume and other data gathering techniques necessary for traffic planning. It includes the knowledge of operational characteristics of persons and vehicles to determine the need for traffic control devices, their relationship with other traffic characteristics and the determination of safe transportation systems.

Traffic Design consists of the design of traffic control devices and roadway operational design. Operational design concerns the visible features of a roadway dealing with such roadway elements as cross sections, curvature, sight distance, channelization, and clearances; and thus it depends directly on the characteristics of traffic flow.

Traffic Planning includes the determination of personal and freight travel patterns on the basis of engineering analysis of the traffic and demographic characteristics of present, future, and potential land use plans. The determination of these patterns assists in the second step of traffic planning: formulation of recommendations for transportation systems and networks of roadways.
Traffic Engineering Research includes the investigation of theoretical and applied aspects of all areas of traffic engineering to develop new knowledge, interpretations, and applications. Research areas include hypothetical testing; development of traffic hardware; theory formulation; and methods of analysis, synthesis, and evaluation of existing phenomena and knowledge.

The traffic engineering profession has been growing and expanding its horizons for the past 70 years. As each decade brings a shift in professional activities to respond to technological advancements, the engineering field needs to address new areas. This publication covers activities that are probably not covered in the above definitions. Accordingly, the definitions will change over time as the profession meets the public’s need for transportation.

ITE’s Role

ITE is an international educational and scientific association of transportation and traffic engineers, transportation planners, and other professionals responsible for meeting mobility and safety needs. ITE facilitates the application of technology and scientific principles to research, planning, functional design, implementation, operation, policy development, and management for all modes of transportation. This is accomplished by promoting professional development of members, supporting and encouraging education, stimulating research, developing public awareness, exchanging professional information, and maintaining a central point of reference and action.

ITE was founded in 1930 and continues to serve as a gateway to knowledge and advancement through meetings, seminars, and publications for members, the engineering profession, and the public. The membership is composed of 15,000 individuals working in 80 countries. ITE’s more than 80 local and regional organizational units and more than 90 student chapters provide additional opportunity for information exchange, participation, and education. The vision of ITE, as approved by the International Board of Direction, is stated:

To be the organization of choice for individual transportation professionals responsible for meeting society’s needs for safe and efficient surface transportation systems.

ITE’s purpose is twofold:

- To enable engineers and other professionals with knowledge and competence in transportation and traffic engineering to contribute individually and collectively toward meeting human needs for mobility and safety.

- To promote the professional development of its members by supporting and encouraging education, stimulating research, developing public awareness, and exchanging professional information.

ITE’s programs include publications; standards development; technical committee research and reports; professional development seminars; training; and local, regional, and international meetings.

This *Handbook* published by ITE, is provided to the membership, other professionals, and interested persons to further the objectives and purposes of the transportation profession. The publication has been developed and prepared by ITE members and other selected authors to present the latest information on the specific subject areas. Additionally, a group of members has reviewed the material to ensure that it is current and accurate relative to professional practice.

Scope of the Publication

Members of the traffic engineering profession, other professionals, and laypersons seeking to understand traffic engineering issues have relied on the *Traffic Engineering Handbook* for information on the state of the art of established practice in traffic engineering. This publication represents the Fifth Edition, providing significant and long-term documentation of ITE’s achievements. The First Edition, published in 1941, was the first book ever dedicated to the subject of traffic engineering. Editions in 1950 and 1965 expanded the knowledge and applications in the field. The 1976 and
1982 editions were combined into one publication entitled *Transportation and Traffic Engineering Handbook*, reflecting the profession’s expanded focus on all modes of surface transportation. The 1992 editions once again provided separate publications on traffic engineering and transportation planning, because the scope of material to be covered was more than ample for two publications. Although this is the Fifth Edition of the *Traffic Engineering Handbook*, it represents the seventh ITE publication that addresses traffic engineering.

The purpose of the publication is to collate, in one volume, basic traffic engineering information as a guide to the best practice in the field. It provides a day-to-day source of reference on the principles and proven techniques in the practice of traffic engineering. A number of other publications are referred to as resources for more detailed information. It is expected that the practicing professional will review these other publications for more detailed information.

The material presented herein is not intended to serve as a statement of a standard or recommended practice in the profession. Other documents should be reviewed for that purpose. The material serves as a guideline for professional traffic engineers to use with the application of engineering judgment in their daily activities. Although the publication is not a textbook for higher education in basic or advanced traffic engineering, it has frequently and appropriately served as reference source for the education community. Each chapter includes a list of publications that should be consulted for specific reading in the subject area.

This *Handbook* has omitted some material included in previous *Handbooks*, and also covers new material. For the first time in many years, the publication does not extensively address the *Highway Capacity Manual*. It was assumed that anyone working in that specific area would have the most recent Transportation Research Board publication, available software, and training to deal with capacity problems in detail, so little need exists to summarize that information. The information on traffic studies has also been omitted because ITE publishes a complete reference on this subject. Roadway lighting is not addressed in this edition; lighting design has become a specialty design area, and available training and software provide more complete coverage than could be offered in a single chapter of this handbook. The previous coverage on legal liability has been omitted because the ITE Expert Witness Council is currently developing an *Expert Witness Information Notebook* to provide detailed information on this subject. This notebook will be available as a separate publication through ITE.

New chapters have been added on statistics, public contact, traffic calming, and access management. The orientation of the text is toward providing additional information with a cross-reference to a major publication that contains more details. There is also an attempt to provide essential information and data frequently used by traffic engineers practicing in smaller jurisdictions.

The Relationship Between the Handbooks

Concurrent with the preparation of this fifth edition of the *Traffic Engineering Handbook*, the preparation of the second edition of the *Transportation Planning Handbook* is also under way. As stated in the introduction to the *Transportation Planning Handbook*:

> Its purpose is to summarize typical practices and characteristics of transportation use to serve as a basic day-to-day reference on proven techniques and study procedures in the practice of transportation planning.

The *Transportation Planning Handbook* primarily addresses the planning and administration of transportation facilities and systems rather than the operation, design, and management of facilities described the *Traffic Engineering Handbook*. A certain amount of redundancy occurs between the handbooks, as is necessary and desirable, but the editors have made a concerted effort to remove contradictory information and make each publication complete in itself. The *Traffic Engineering Handbook* addresses the details of the traffic engineering functions, while the *Transportation Planning Handbook* includes a broader range of subject matter pertaining to transportation in general.
INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>Absolute speed limit 244</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration 14, 50</td>
<td>Acceleration at intersections 76</td>
</tr>
<tr>
<td>by trucks 65</td>
<td>characteristics 54</td>
</tr>
<tr>
<td>acceleration geometry 236</td>
<td>acceleration of gravity 57–58, 63, 66</td>
</tr>
<tr>
<td>performance 61</td>
<td>performance 61</td>
</tr>
<tr>
<td>acceleration distances 334</td>
<td>high acceleration capability 32</td>
</tr>
<tr>
<td>slower acceleration 32</td>
<td>acceleration distances 334</td>
</tr>
<tr>
<td>rates 60, 62, 319</td>
<td>maximum acceleration rates 60, 63</td>
</tr>
<tr>
<td>maximum acceleration rates 60, 63</td>
<td>acceleration 62</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>Access 36, 165, 284, 563</td>
</tr>
<tr>
<td>Aisles 531, 544, 562</td>
<td>classification 310</td>
</tr>
<tr>
<td>adjacent land use 227, 267, 295, 327, 350, 364, 401, 409, 460</td>
<td>limited-access highways 249</td>
</tr>
<tr>
<td>Administrative 210</td>
<td>management 306–309, 345</td>
</tr>
<tr>
<td>Administrative and enforcement burdens 222</td>
<td>points 113, 225, 306, 339, 532</td>
</tr>
<tr>
<td>cost 210</td>
<td>pedestrian access 339, 531, 562</td>
</tr>
<tr>
<td>shared 342</td>
<td>spacing 325</td>
</tr>
<tr>
<td>spacing 325</td>
<td>traffic access 556</td>
</tr>
<tr>
<td>Accident 678</td>
<td>Age 4</td>
</tr>
<tr>
<td>analysis 19, 26</td>
<td>age and gender 4–5, 191</td>
</tr>
<tr>
<td>causation 9, 12, 28</td>
<td>age and sex 194–196</td>
</tr>
<tr>
<td>classification 210</td>
<td>age differences in information processing 23</td>
</tr>
<tr>
<td>control 6</td>
<td>alcohol and 17</td>
</tr>
<tr>
<td>costs 210</td>
<td>behavioral compensation 28</td>
</tr>
<tr>
<td>countermeasures 205–209</td>
<td>child pedestrians 44</td>
</tr>
<tr>
<td>data 29, 38, 202, 218, 581, 676</td>
<td>driver age 16, 348</td>
</tr>
<tr>
<td>database 190</td>
<td>driving problems 21</td>
</tr>
<tr>
<td>frequency 126, 225</td>
<td>effects of age on sign legibility 21</td>
</tr>
<tr>
<td>hazard 271, 274, 581</td>
<td>fatality rates by age 194</td>
</tr>
<tr>
<td>investigation 9, 26, 147</td>
<td>injuries by age 195</td>
</tr>
<tr>
<td>involvement 4, 9, 24, 28</td>
<td>licensed drivers 4–5, 197</td>
</tr>
<tr>
<td>litigation 13</td>
<td>medical problems that increase with age 20</td>
</tr>
<tr>
<td>pedestrian 37, 40</td>
<td>minimum driving age 198</td>
</tr>
<tr>
<td>Aerodynamic drag 59, 160</td>
<td>older driver 20–22</td>
</tr>
<tr>
<td>Aerodynamic drag 59, 160</td>
<td>older pedestrians 37, 41–42, 46</td>
</tr>
<tr>
<td>Alcohol-related accidents 17</td>
<td>reaction time 4, 12, 21, 45–46, 90</td>
</tr>
<tr>
<td>Aging 7</td>
<td>relationship between age and fatigue 17</td>
</tr>
<tr>
<td>Aging 7</td>
<td>research on 19</td>
</tr>
<tr>
<td>Alcohol-related accidents 17</td>
<td>UFOV reduces with increasing driver age 11</td>
</tr>
<tr>
<td>Agencies 55</td>
<td>enforcement agencies 242–243, 252, 255, 290, 609, 632, 646</td>
</tr>
<tr>
<td>Agencies 55</td>
<td>federal agencies 360–362</td>
</tr>
<tr>
<td>Administrative and enforcement</td>
<td>government agencies 644, 671, 673, 686</td>
</tr>
<tr>
<td>maximum acceleration rates 60, 63</td>
<td>highway agencies 55, 102, 222–223, 311, 345, 360, 590, 597, 601</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>police agencies 603</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>regulating agencies 683</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>service agencies 284, 605</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>state agencies 342, 360, 673, 683</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>support agencies 590</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>traffic engineering agencies 670</td>
</tr>
<tr>
<td>of the passing vehicle 374</td>
<td>transit agencies 649, 666, 681</td>
</tr>
</tbody>
</table>
transportation agencies 200, 236, 248, 307, 349, 591, 644, 658–659, 667, 686
transportation management agencies 645, 648, 656, 659–670

Air Resistance 58–60

Airport 114
change of mode facilities 574
en-route information systems 650–651
parking design 558
parking operations 530
peak-hour volumes 533

Alignment 6
accident pattern 206
alignment and cross section 356
chevilinear alignment markers 19
curviinear alignment 298
design 55, 368, 391, 404, 407
free-flowing alignment 292
freeway alignment 392
geometric highway design 364
guidelines 408
high-speed alignment 380
highway alignment 353
horizontal alignment 348, 364, 368, 375, 380, 437
roadway alignment 6, 13, 426, 440, 494
speed and alignment 368
stable alignment 496
to improve SSD 374
vertical alignment 348, 352, 364, 369–370, 374, 391, 405, 447
with DSD 398

Alley 258, 531, 551, 563, 580, 585
American Association of State Highway and Transportation Officials 12, 54, 76, 111, 224, 347, 419, 528, 543, 688
American Automobile Association 31, 39
American National Standards Institute 566
Amphetamines 19

Angle parking 207, 228, 294, 298, 548, 569, 582, 583
Annual average daily traffic 133, 299
Anthropometry 31, 33
Antilock brake systems 67
Approach speed 206, 237, 248, 439, 444, 517
Arterial 93
access 343
classification 97
facilities 314
function of an arterial 313
high-speed arterial 308
highway 350–351, 391, 399
improvement 290
major arterial 203, 314, 337–338, 343, 409, 592
movement along the arterial 105
operations 100
principal arterial 310–311, 347
regional arterial 290, 338, 453
traffic flow 316

Articulated buses 53
Auditory reaction time 45
Auditory signal 47
Auxiliary lane 102, 316, 327, 329, 332, 334, 354, 378, 393, 396
Average daily traffic 93, 101, 204, 331, 380, 517
Average running speed 81, 92
Average travel speed 80–82, 92, 115

B
Ballast 442
Barbiturates 19
Barricade warning lights 454
Barricades 441
Barrier 29, 241, 430
barrier type 380, 383
barrier-separated HOV lane 234
boundary barrier 536
Jersey Barrier 344
median barrier 283, 380
moveable concrete barrier system 232
pedestrian barriers 209, 240
physical barriers 44, 281, 545
positive barrier separation 248
reversible lane operations 231
roadside barrier 380, 438, 498
traffic barrier 206, 431, 498

Beacons 30, 424, 453, 455, 466, 494, 522, 665
accidents 37
collisions with bicycles 202
designing treatments for bicycles 284
design of bicycle facilities 407
detectors 518
facilities 75–76, 93, 228, 407, 414
fatal bicycle crashes 229
intermodal bicycle applications 229
lanes 74, 223, 228, 273, 400
motorized bicycles 202
parking 544–545
paths 48, 228, 407
pedestrian and bicycle movements 335, 400
riders 500, 546
safety 285
signing 229
speed 25, 75, 76
traffic 228, 400, 407
Bicyclists 37, 42, 48, 76, 213, 228, 385, 407, 413, 432, 545
Bikeways 1, 219, 228, 401
Blank-out sign 425
Blind pedestrians 43
Boats 520
Bottlenecks 233, 524, 595, 647
Boundary control 546–547, 551
Boundary protection 536, 566
Brake reaction distance 13
Brakes 13
deceleration 65, 66
Braking 6, 12, 18, 49, 57, 66, 76, 356, 385, 655
antilock braking system 29
locked-wheel braking 66–67
Bridges 31, 104, 182
height limitations under bridges 31
low bridges 32
movable bridges 454, 468, 521
reversible lanes and 230–231
suspension of tolls 254
Budget 527, 616, 643, 667
budget allocation 268
levels and regulation 197
priorities for federal program spending 221
Bumpers 86, 88, 536, 543, 602
Bureau of Motor Carrier Safety 31
Bus zone 586
Buses 40, 50, 93, 115, 220, 231, 284, 319, 520, 586, 649, 680
intercity bus 50, 53, 71, 99
school bus 53, 212, 319, 543
transit bus 50, 53, 71, 96, 213, 397, 514, 572, 687
trucks and buses 55, 101, 220, 319, 653
types of buses 53
C
California Department of Transportation 62, 466, 644, 678
Call boxes 600
Calming 257–305
arterials 300–302
performance characteristics 278
pros and cons 279–282
strategies 273, 275–276
typical costs 283
Canadian Capacity Guide 124
Candela 420
Cannabis 19
Capacity 3, 71, 226, 399, 454, 518, 660, 677
analysis 93, 97, 99
capacity and level of service 78, 93, 100, 113, 267
capacity and quality of service 93, 103, 113
characteristics 72
constraints 78, 111, 405
capacity flow rate 87, 125
of a facility 94
of a roadway 225, 231
of the street system 581
communications capacity 647, 663
demand exceeds capacity 87, 105
design capacity ratios 72
determination of 101, 105
passenger capacity 73
person capacity 94–95
precipitation reduced capacity 115
volume and capacity 92
Car Stacking Units 554
Categorical exclusion 362–363
Cellular phone(s) 35
Centerline 56, 208, 281, 402, 431, 433, 435, 446, 451
Central limit theorem 142
Central tendency 129
Changeable message signs 32, 241, 255, 425, 494
Channelization 1, 205, 208, 238, 241, 358, 384, 607
Chart 212, 292, 311, 413, 469, 619, 625–626, 631
Chevron 280, 425
Children 37, 41, 43, 248, 286, 453
school children 407
Circular curve 364, 368
Clear recovery area 379–380
Clearance lost time 89–90
Clients 672
Closed circuit television 489
Cloverleaf interchange 392, 394
Cluster housing 580
Cognitive 15, 25
cognitive and motivational model 5, 24
cognitive characteristics of high-risk drivers 28
cognitive conspicuity 33
cognitive factors 4, 11
Collaborative approach 169–170
Collector 237, 297, 307, 347, 387, 399, 445, 588
College 297, 300, 501
Commercial area 297, 300, 501
Commercial vehicle operation 30, 642, 646, 653, 656, 673, 683, 687
Communications 172–173
Community-oriented programs 211
Community Traffic Safety Programs (CTSPs) 211
Computer 36, 158, 200, 450, 470, 606, 631, 643, 653
analog computer 485
animation 567
central computer 485–486, 491, 647
chart computer 621, 631, 639
computer communication 201
computer model 56
computer program 157, 355, 418, 480, 687
computer-aided design 371
computer-aided dispatching systems 683
computer-driven locating systems 451
computerized pattern recognition 514
computers to control traffic signals 643
digital computer 481, 485, 642
hardware 668
impact of computers 126
laptop computer 36, 450
monitoring of traffic flow 398
software 126, 210

Condominium 580
Cone 30, 442
traffic cone 230
of reflected light 420
of vision 412, 416, 493, 500–501

Confidence intervals 143–144, 156
Confidence levels 132
Conflict 39, 45, 157, 174–176, 229, 238, 405, 435, 521, 575, 677
attention conflict 36
management 170, 174, 177, 188
with the emergency vehicle 522
conflicting pedestrian-vehicle flows 40
conflicts at intersections 47, 100, 282, 314
degree of conflict 91, 533
left-turn conflict 38, 227, 237, 480
merging/diverging conflict 231
right-of-way conflict 91
traffic conflict 201, 477
conflicting traffic streams 87
traffic conflict analysis 412
traffic conflict studies 201
trust and conflicting positions 184
vehicle-vehicle conflict 226, 228, 301

Conflict monitors 525–526
Congestion 240, 302, 524, 549, 581, 582, 592, 647, 683
and accident 240, 343, 530, 581
and hazard 576, 581
bypass congestion 233
congestion delay and safety problems 239
management 302
nonrecurring congestion 241
reasons for 592
recurring 594, 602
reducing congestion 239, 307

reducing highway congestion 591
urban congestion 647, 676
Consensus 167–168, 172, 187
Conspicuity 15, 19, 21, 416, 501–502
Construction 30, 148, 159, 356, 522, 530, 547, 640, 656
activity 29, 652
cost 279, 349, 369, 539, 547, 560
damage 514
construction environment 182
construction zone 29, 231, 511, 683
Continuous two-way left turn lanes 225
Contrast 15, 21, 141, 412, 546, 567
Control 6, 27, 30, 157, 346, 638, 655
access control 306, 308, 312, 342, 351, 400
delay 91
strategies 224, 594, 615, 646
operational control 317
vehicle control 7, 30, 55, 100, 417, 646, 655
Conviction 244
Corner clearance 325
Corner radius design 387
Corridor 95, 213, 259, 343, 610, 646, 673
Cost-benefit 210, 223
Crash analysis 199–200
Crash reduction 200
Crawl speed 98
Crescent project 684
Critical density 85
Critical speed 121
Cross section 1, 30, 267, 376
Crossing traffic streams 384
Crosswalk 36, 38, 205, 384, 409, 434, 500
Curb 39, 55, 91, 206, 230
barrier curb 401
curb radii 207, 405
curb ramps 209, 409
curb return 409, 498, 500, 502, 508
curb return radii 315
island 267
lines 122
markings 434, 436
parking 96, 99–100, 227, 402, 580
ill-defined 46
maximum curb 44
mountable curb 401
right-entry curb 91
Curbside 74, 298, 301, 574
Cycle 33

D
Dark adaptation 15
Darwin matrix 259–261
Data collection systems 115
Daytime running lights 35
Death 4, 187, 210
car occupant death 4
cause of death 22
death rates 23, 190
leading causes of death 191
motor vehicle death 37
pedestrian death 37
traffic death 37, 190
Deceleration 65–66, 321
Decision sight distance 375
Degrees of freedom 133
Delay 34, 43, 70, 210, 402, 443, 539, 676
Delineators 206, 432, 437–438
Density 42, 78, 291
density of air 59
high-density seating 71
traffic density 17, 509–510
Depreciation 70
Design driver 6–7, 355
Design exceptions 364
Design guidelines 348–349
Design hour 108, 110–111, 113, 327
design hour volume 113, 353
Design roadway 346
analysis 78
Design speed 13, 30, 96, 248, 291, 327, 352, 366, 391
Design study report 363–364
Design vehicle 54, 319, 327, 355, 387–388, 542
Destination sign 415, 428
Detectors 107, 210, 398, 435, 463, 487, 502, 512, 520, 599, 618
Directional distribution 90, 99, 111, 113
Dispenser 534, 549, 567
Distributions 133–141
binomial 134
chi-square 136
continuous 133, 140
multinomial 135–136
normal 139
poisson 138
probability 133
sampling 141
student t 154
Downtown people mover 71
Drainage 369–370, 392, 463, 531
DRIVE 643
Driver(s) 4, 7, 21, 214
accidents among drivers 7
aggressive driver 27, 598
average driver 13, 26, 418
behavior 9, 24, 46, 283, 366
car driver 16, 30, 553
driver characteristics 30, 74, 94, 126
commercial driver 16, 653, 658
design driver 355
driver cognitive load 10
driver information processing 10
driver motivation 25, 28
driver perception-reaction time 8
Driver Performance Data Book 7
driver requirement 4–5, 11
driver social behavior 24–25, 27–28
driver stress 26–27, 31
driver’s license 4, 22
drivers involved in fatal crashes 192, 197
drunk driver 19, 158
dynamic driver simulation 23
education 22
error 16, 29, 121, 683, 685
fatigue 15, 16, 653
female driver 23, 24
high-risk driver 27, 683
how drivers process sign information 9
inattention 29
low driver alertness 22
male driver 23, 192
middle-aged drivers 22
night driving 14
novice drivers 10, 26
older drivers 7, 11, 14, 19, 21, 34, 386, 414
patterns in driver behavior 24
reckless drivers 24
truck drivers 9, 16, 31
younger drivers 12, 17
Driveways 229, 267, 322, 405, 460, 531
design of driveways 306
hazards at intersections and driveways 238
high-volume driveways 330, 336, 532
location of driveways 325, 532
minimum spacing of driveways 207, 312
one-way driveways 532
signalized driveways 316
unsignalized driveways 316, 338, 339
Driving 7, 557
aggressive driving 281, 597, 598, 617
definition of driving 24
driving and traffic safety 4
driving behavior 6, 25, 27
change in driving behavior 216
driving behavior inventory 24–28
effects of alcohol and drugs on driving behavior 17
erratic driving behavior 25
influence of amphetamines on driving 19
driving in heavy traffic 24
driving population 126, 135, 160, 356
factors in driving 7, 24
major components to driving 4
night driving 14
the driving task 4–6, 9, 30, 271, 384, 411, 685
Drug use 22, 30
Drums 66, 442
Durable agreements 171
Dynamic visual acuity 7, 20

E

Education 198, 213, 599, 611
education about transportation planning and engineering 183
education of drivers 38, 252
education of pedestrians 40
Effectiveness measurements 423
Elderly pedestrians 434
Electrical cables 488–489
Electronic Fare Systems 645, 650, 681
Electronic Route Guidance System 643
Elevator garages 561
Emergency condition regulations 252
Emergency snow ordinance 253
Emergency vehicle 284, 455, 509, 521, 547
 access 272
 operations 604
 emergency vehicle dispatchers 649
 special control mode to assist passage of 456
Empathy 173
Employees 180, 187, 254, 304, 449, 563, 585, 610
End island 547, 551, 570
Enforcement 243
Engineering 1
 engineering analysis 307, 498
 engineering profession 2, 291
 highway engineering 611
 traffic engineering 1, 126, 245, 526
 transportation engineering 1, 135, 182, 312
Entrance angle 420, 423
Entrance ramp control 453
Environment 5, 447, 601
 complex environment 11, 46
 cycling environment 284
 development environment 96
 driving environment 10, 36
 environmental interchangeability 465
 roadway environment 4, 10, 23, 375
 rural environment 660
 sensitivity to the environment 274
 speed environment 267, 282, 368, 388
 suburban environment 74, 314, 405
 traffic environment 284
U.S. Environmental Protection Agency 68
 urban environment 15, 316, 349, 369, 391, 400, 660
 visual environment 14, 46
Environmental assessment 362
Environmental impact statement 362
Environmental process 360–361
Environmental traffic management 257
Epoxy 440
Error 9, 45, 74
 decision-making error 147
 degree of error 126
 display error 525
 error rates 147, 159, 667
 human 7
 margin of 13
 pedestrian 38
 refractive 20
 statistical 146–147
 steering 16
Exceptions 239, 318, 428, 536, 576
 design exceptions 359–360, 364
Exit ramp 231, 392–393, 535
 express exit ramp 557
 visibility of the 393
Expectancy 8, 597
 concept of expectancy 8
 crash expectancy 344
 element of 33
 reasonable 94
Expert Witness 3
 ITE Expert Witness Council 3
Eye height 34
Eye movement 9, 10, 20
Eyellipse 31, 34
Facility type 94, 530
Fatal Accident Reporting System 191
Fatalities 17, 29, 37, 192, 625
 alcohol-related 17, 192
 driver fatalities 197
 occupant fatalities 192, 197
 older population 197
 pedal-cyclist fatalities 192
 pedestrian fatalities 17, 37, 192, 197
 road fatalities 37
total fatalities 23, 195
 traffic fatalities 37, 190–191, 194
 transportation fatalities 191
 unintentional fatalities 190
 vehicle fatalities 32, 191
Fatigue 15–16, 685
Federal Communications Commission 651
Federal government 412, 642, 644, 653
Federal Highway Administration
22, 49, 50, 62, 77, 217, 222, 251, 349, 409, 452, 460, 624, 642
 Highway Performance Monitoring System 113, 128
 highway statistics 5, 102, 643
Fees 567, 585, 610
 cities levy fees 585
 collect fees 530
 Disposition of Fines and Fees 222
 monthly leasing fees 663
 parking fees 610, 650, 666
 toll-road fees 610
Fiber optic cable 488–490, 663
Field of view 45
Financial 234, 391, 592
 commitment 234
 constraints 215
 feasibility 340, 556
 financial feasibility analysis 556
 financial feasibility study 340
 institutions 568, 667
 Smart Cards issued by financial institutions 666–667
 investment 448
 transit agency financial management 650
Finding of No Significant Impact (FONSI) 363
Fire Protection 565
 National Fire Protection Association 488, 528
Flasher 456, 638
Flashing beacons 424, 453, 459, 494
Flow 78
 rates 79, 84, 332, 534
interrupted flow 78, 87, 310
maximum flow 79, 85–86, 94–95, 103, 337
traffic flow 1, 62, 78, 221, 227, 337, 355, 571, 600
uninterrupted flow 78, 87, 310
Fluorescent 29, 417
Follow-up time 90
Foreslopes 379–380, 391
Four-way stop 183, 589
Free-flow speed 85, 95
Freedom 199, 480
degrees of freedom 133, 136, 142–143, 153, 155
freedom and flexibility of motorist 239
Freeway incident 614, 629
freeway incident detection and response 678
freeway incident traffic management (FITM) 633
Freeway Management Handbook 640
Freeway management system 83, 648, 651
Freeways 78, 113, 227, 308, 391, 602
basic freeway segments 95
control of access 351
freeway systems 396
in developed areas 396
in peak times 303
future freeways 346
high-volume freeways 392
hourly volumes 103
HOV lanes 232
intelligent vehicle systems 685
operational problems 396
park and also ride 576
planning interchanges along freeways 392
ramp control signals 524
ramp junctions 95, 97
rural freeways 249, 378, 383, 391
speed-flow relationship 119
suburban freeways 396
urban freeways 103, 113, 379, 383, 391, 602
weaving areas 95
Friction 14, 57, 66, 245, 296, 483, 581, 656
Friction coefficient 66
Frontage roads 334–335
Fuel consumption 58, 68, 93, 336, 467, 596, 685
Full trailer 52
Functional classification 350
Fundamentals of Traffic Engineering 217, 527
Funding 165, 358, 644
federal 361
for surface transportation 221
for traffic calming 288
identification of funding needs and sources 659
involving stakeholders 178
joint-venture funding 556
looking for funding opportunities 617
multi-agency 233
new forms of transportation 165
project partnering 182
public support 168
Safety equipment 564–566
signing and marking 567
site characteristics 556
steel frame garage 556
structural systems 559
underground garages 561, 565, 580
Gender 4, 28, 203
differences 23–24
Group 24
Geometric Effects 386
Glare 15, 30, 47, 421, 496, 553
Glass beads 420
Grade resistance 59
Grade separations 408–409
Grades 49, 60, 207, 348, 369–370, 540, 571
Guidance system 607, 682
Guide signs 6, 415, 424, 447, 607, 618
Guidelines for Driveway Design and Location 405
Guidelines for Urban Major Street Design 350–351
Gap 36, 40, 45, 84, 90, 287
acceptance 25, 47, 90, 125, 238, 358
adequate gap 205, 314, 336, 460, 471
critical gap 90, 125, 376
Garages 546, 556
drainage 566
elevator garages 561
fire protection in 565
free-standing garages 560
interfloor systems 556–558
layout of parking aisles and stalls 556
lighting 563
parking 55, 530, 563
parking structures 554
pedestrian circulation 562
ramps 556–558
revenge systems 68
Handicapped 43, 385
parking 540
pedestrians 41, 409
ramps 463, 502, 546
stalls 540
Hashish 19
Headway 84, 86–87
Hearings 166, 180, 309
public hearings 165, 171, 177, 180, 360
Heavy vehicle 55, 99, 294, 370, 655
High Occupancy Vehicle 345
High Occupancy Vehicle lanes 231–233
Highway advisory radio 252, 255, 594, 639, 651
Highway capacity analysis 113
Ideal conditions 95–96, 103, 125
Illinois Department of Transportation (IDOT) 390, 406
Illuminance 554, 562
Illuminating Engineering Society 564, 589
Immunity 490
Impairment 17
Incidents 22, 185, 241, 398, 595–603, 647
management 602, 648
Inclement weather 576, 621, 638
Industrial plants 533, 568, 572, 586
Inertial resistance 57, 60
Information processing 7, 21, 606, 642
Informational signs 414, 567
Inspections 448–449, 451, 684
Institute of Transportation Engineers (ITE) 1, 177, 263, 305, 362, 443, 529, 665
road 449
safety 653, 666, 683–684, 687
vehicle inspections 10, 666
Insurance 210, 525, 557
Intelligent transportation systems 100, 199, 396, 642
Advanced Traveler Information System (ATIS) 665
ATM 670
collision-avoidance systems 199
ITS strategies 100, 599
Mobility 2000 644
nationwide deployment of 221 smart highways 199
Interrupted flow 87
Intersection 8–10, 202, 389, 399, 503
accidents at intersections 24, 47, 386
approaches to 14
boundaries 316–317
classification 204
collision diagram 201
control type 202
crash rate calculation 203
intersection dash 36
design issues 399
intersection ranking 204
sight distance at intersections 30, 228, 551
signalized intersection 38, 78, 87, 315–316, 333, 516, 581
spacing 315–316, 337–338, 404
T-intersection 38, 281–282, 336, 518
type 137
Interstate Commerce Act of 1935 219
Inventory 449, 451
inventory program 449–450
inventory systems 203
sign inventory 450
Island 55, 319, 384, 387, 546
central island 91, 281, 283
channelizing island 240, 439, 532
curbed island 551
end island 551–552
interrupted flow 87
island design 388–389
ISTEA 220
placement and type 384
raised island 238, 388
splitter island 91, 279
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic island</td>
<td>238, 384, 388, 426</td>
</tr>
<tr>
<td>IVHS</td>
<td>642, 688</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>k–factor</td>
<td>110</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lamps</td>
<td>42, 452, 454, 497, 527, 554</td>
</tr>
<tr>
<td>Lane utilization</td>
<td>97</td>
</tr>
<tr>
<td>Lane-use control signals</td>
<td>230, 453, 522–524</td>
</tr>
<tr>
<td>Lane-use control signs</td>
<td>241</td>
</tr>
<tr>
<td>Lanes</td>
<td>30, 90, 502, 505</td>
</tr>
<tr>
<td>Auxiliary lanes</td>
<td>327</td>
</tr>
<tr>
<td>bike lanes</td>
<td>75, 97, 228, 261, 407</td>
</tr>
<tr>
<td>continuous two-way left turn</td>
<td>225</td>
</tr>
<tr>
<td>distribution</td>
<td>113–114</td>
</tr>
<tr>
<td>high-occupancy-vehicle lanes</td>
<td>94</td>
</tr>
<tr>
<td>left-turn lanes</td>
<td>207, 225, 230</td>
</tr>
<tr>
<td>peak-hour lanes</td>
<td>299</td>
</tr>
<tr>
<td>reversible lanes</td>
<td>100, 113, 223, 230–231, 523</td>
</tr>
<tr>
<td>right-turn lanes</td>
<td>105, 207, 333, 386, 532, 569</td>
</tr>
<tr>
<td>traffic lanes</td>
<td>228, 297, 336, 402, 583, 678</td>
</tr>
<tr>
<td>turning lanes</td>
<td>90, 227, 241, 316, 384, 428</td>
</tr>
<tr>
<td>Law enforcement</td>
<td>29, 180, 221, 243, 379, 526, 597, 624</td>
</tr>
<tr>
<td>Lawsuit</td>
<td>293, 364, 411, 527, 547, 565</td>
</tr>
<tr>
<td>Lead-lag controller phasing</td>
<td>478</td>
</tr>
<tr>
<td>Left turn</td>
<td>20, 124, 129, 376, 461, 470, 533</td>
</tr>
<tr>
<td>Legal liability</td>
<td>3</td>
</tr>
<tr>
<td>Legibility of signs</td>
<td>22</td>
</tr>
<tr>
<td>Level of confidence</td>
<td>132</td>
</tr>
<tr>
<td>Level of service</td>
<td>78, 93, 100, 477, 524, 649, 679, 686</td>
</tr>
<tr>
<td>Liability</td>
<td>69, 201, 222, 292–294, 527, 557, 637</td>
</tr>
<tr>
<td>Light Emitting Diode</td>
<td>497</td>
</tr>
<tr>
<td>Light trucks</td>
<td>50–51, 459, 535, 543</td>
</tr>
<tr>
<td>Lighting</td>
<td>207</td>
</tr>
<tr>
<td>lighting design</td>
<td>3</td>
</tr>
<tr>
<td>roadway lighting</td>
<td>3, 205–206, 459</td>
</tr>
<tr>
<td>street lighting</td>
<td>47, 206, 285, 460</td>
</tr>
<tr>
<td>Lights</td>
<td>15, 423, 626</td>
</tr>
<tr>
<td>Lights, flashing and steady burn</td>
<td>442</td>
</tr>
<tr>
<td>Line marking</td>
<td>285, 536</td>
</tr>
<tr>
<td>Livable streets</td>
<td>259</td>
</tr>
<tr>
<td>Loading dock</td>
<td>542–543, 572</td>
</tr>
<tr>
<td>Loading zones</td>
<td>400, 580, 585</td>
</tr>
<tr>
<td>Local government</td>
<td>180, 219, 242, 269, 287, 358, 577, 609, 660</td>
</tr>
<tr>
<td>Lots</td>
<td>233</td>
</tr>
<tr>
<td>off-street lots</td>
<td>530</td>
</tr>
<tr>
<td>parking lots</td>
<td>36–37, 202, 355, 529, 545, 547</td>
</tr>
<tr>
<td>Lumen</td>
<td>554</td>
</tr>
<tr>
<td>Luminaire</td>
<td>562</td>
</tr>
<tr>
<td>Lumiance</td>
<td>22, 420</td>
</tr>
<tr>
<td>Lux</td>
<td>553–554</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mainline freeway</td>
<td>677</td>
</tr>
<tr>
<td>Maintenance</td>
<td>69, 71, 198, 348, 538, 554, 559</td>
</tr>
<tr>
<td>automobile maintenance</td>
<td>160</td>
</tr>
<tr>
<td>issues of maintenance</td>
<td>187</td>
</tr>
<tr>
<td>maintenance costs</td>
<td>71, 279, 459, 526, 559</td>
</tr>
<tr>
<td>maintenance workers</td>
<td>255</td>
</tr>
<tr>
<td>maintenance zones</td>
<td>30</td>
</tr>
<tr>
<td>road maintenance</td>
<td>208</td>
</tr>
<tr>
<td>street maintenance</td>
<td>166, 443</td>
</tr>
<tr>
<td>Malfunction</td>
<td>485, 491, 525–526, 626</td>
</tr>
<tr>
<td>Management</td>
<td>2</td>
</tr>
<tr>
<td>community-based management</td>
<td>213</td>
</tr>
<tr>
<td>conflict management</td>
<td>174</td>
</tr>
<tr>
<td>freeway management</td>
<td>591, 641, 647, 651</td>
</tr>
<tr>
<td>incident management</td>
<td>180, 398, 597, 602, 622</td>
</tr>
<tr>
<td>management of facilities</td>
<td>1, 3</td>
</tr>
<tr>
<td>management of roads</td>
<td>1</td>
</tr>
<tr>
<td>safety management</td>
<td>213</td>
</tr>
<tr>
<td>speed management</td>
<td>250, 277</td>
</tr>
<tr>
<td>traffic management</td>
<td>83, 256, 590</td>
</tr>
<tr>
<td>Manual of Improved Practice</td>
<td>401</td>
</tr>
<tr>
<td>Manual of Traffic Engineering Studies</td>
<td>217</td>
</tr>
<tr>
<td>Manual on Uniform Traffic Control Devices</td>
<td>222, 412</td>
</tr>
<tr>
<td>Manuals</td>
<td>294, 308, 411, 585</td>
</tr>
<tr>
<td>Maps</td>
<td>6, 43–44, 563, 601, 650</td>
</tr>
<tr>
<td>Marijuana</td>
<td>19, 22</td>
</tr>
<tr>
<td>Marking</td>
<td>29, 39, 251, 426</td>
</tr>
<tr>
<td>at pedestrian crosswalks</td>
<td>40</td>
</tr>
<tr>
<td>centerlines</td>
<td>446</td>
</tr>
<tr>
<td>curb markings</td>
<td>436</td>
</tr>
<tr>
<td>crosswalks</td>
<td>434</td>
</tr>
<tr>
<td>design requirements for</td>
<td>411</td>
</tr>
<tr>
<td>guidelines on the marking of</td>
<td>409</td>
</tr>
<tr>
<td>crosswalks</td>
<td></td>
</tr>
<tr>
<td>in school zones</td>
<td>46</td>
</tr>
<tr>
<td>inadequate pavement markings</td>
<td>206–207</td>
</tr>
<tr>
<td>lane lines</td>
<td>446</td>
</tr>
<tr>
<td>longitudinal markings</td>
<td>433</td>
</tr>
<tr>
<td>maintenance</td>
<td>451</td>
</tr>
<tr>
<td>marking a bypass lane</td>
<td>336</td>
</tr>
<tr>
<td>marking of passing zones</td>
<td>374</td>
</tr>
<tr>
<td>no passing zones</td>
<td>446</td>
</tr>
<tr>
<td>on an existing roadway</td>
<td>228</td>
</tr>
<tr>
<td>parking stalls</td>
<td>546</td>
</tr>
<tr>
<td>pavement marking design</td>
<td>32</td>
</tr>
<tr>
<td>railroad crossings</td>
<td>432</td>
</tr>
<tr>
<td>single-direction, no-passing</td>
<td>225</td>
</tr>
<tr>
<td>special markings</td>
<td>438</td>
</tr>
<tr>
<td>to control pedestrian movement</td>
<td>39</td>
</tr>
<tr>
<td>to supplement signs or signals</td>
<td>241</td>
</tr>
<tr>
<td>transverse markings</td>
<td>434</td>
</tr>
<tr>
<td>Mass/power ratio</td>
<td>60–61</td>
</tr>
</tbody>
</table>
MAYDAY system 652, 661, 678
Measure of effectiveness 80, 96, 162
Mechanical garages 561
Media 159, 177, 185, 290, 363, 489, 594
Median 98, 129, 148, 224, 299
Mental capacity 10
Metering 97, 302, 396–398, 424, 524
Minimum Required Visibility Distance 21
Minimum speed limits 249
Ministerial Task Force 289
Minnesota Department of Transportation 106, 682
Mitigation measures 362
Mobility 1–2, 43, 254
Model traffic ordinance 222
Mobility 2000 642, 644, 685, 688
Mopeds 540, 544
Motion 7, 50, 57, 509, 600
Motivation 4, 6, 25
Motor Vehicle Safety Act of 1966 219
Motorcycles 32, 102, 540, 544, 573
Motorcyclists 4, 32, 213, 443
Motorist 25, 74, 134, 151, 229, 426, 523
Motorist information systems 602
Mountable curbs 401
Multilane highways 99, 386
Multiple turn lanes 205, 241
Multiway stop control 237
MUTCD 206, 222, 374, 412
Myopia 15

N
Narcotics 19, 192
National Committee on Uniform Traffic Laws and Ordinances 219, 222, 527–528
National Cooperative Highway Research Program 77, 218, 308, 349, 528, 574
National Electrical Manufacturers Association 465, 528, 646
National Environmental Policy Act 360
National Highway Traffic Safety Administration 7, 191, 251, 674
National Safety Council 47, 210
National Traffic and Motor Vehicle Safety Act of 1966 219
Navigational 415
navigational decisions 375
navigational information 6, 415
Negligence 222, 292, 637
Neighborhood 177, 291, 307
livable neighborhoods 263
design 257
streets 75, 259, 586
traffic management 258
neighborhoods as systems 264
residential neighborhood 237, 445
traffic calming in neighborhoods 288
traffic problems in neighborhoods 263
Network 1, 335, 568
area network 568, 645, 665
capacity 259, 383
characteristics 240
communications network 619, 623, 651, 656, 664
modeling 484
roadway network 226, 232, 461, 483
street network 257, 268, 290, 400, 407
traffic network 266–267, 583
New construction 350, 359–360
Newspapers 27, 216
Night driving 14
Nighttime conditions 42
Noise 13–14, 92, 271, 362, 486, 512
No standing 584
No stopping or standing 584
No-passing zones 224, 349

O
Object markers 432, 436–437, 449
Observance of safety design 213
Observation angle 420, 422
Obstruction approach markings 439
Occupancy control 515
Off-street parking 207, 531, 580
Office developments 572
Offset 66, 90, 234, 306, 368
Off-tracking 50, 55–56, 378
Oil consumption 71
Older driver 19–22
Older pedestrian 37, 46
Operating costs 69–70
On-site circulation 340–342
One-way streets 38, 207, 219, 226–227, 532
Operational analysis 101
Operational conditions 94–95, 261, 360, 460
Optical units 491
Overhead signs 230, 240, 415, 429

P
Pace 7, 8, 99, 245, 642
Panels 36, 423, 442, 618
Park-and-ride 229, 233, 397, 577, 611
Parking 124, 219, 228
acceptance rates 533
at curbs 47, 579
bus parking 544
change of mode facilities 575
curb parking 99, 105, 228, 401, 529, 580, 582
definitions 529–530
design 532–533
dimensions 535–531
entertainment 580
garages 556
gate capacities 534
hospitals 580
illegal parking 207
industrial plants 573–574
liability issues 547
office development 573
parking 228, 400, 405, 517
parallel parking 207, 228, 294, 582
park and ride 578
prohibitions 231, 415, 436, 581, 583
passenger vehicles 55
pedestrian access 36
restrictions 583, 587
shopping centers 569
transit 575
trucks 541–544
volumes 534
Parking fee 530, 553, 567, 610, 650
Parking generation 568, 579
Parking lot layout 547–548
boundary controls 551
car stacking units 554
drainage 553
end island 551
landscape 552
lighting 553–554
maintenance 554
Parking Principles 575, 589
Parking regulations 584, 587
Parking restrictions 227
Parking space 228, 303, 560, 588
Partial cloverleaf 392
Passenger cars 50–51, 53, 192, 251, 376, 459, 535
Passing sight distance 14, 224–225, 370, 374, 446
Passing zones on two-lane highways 65
Passive signs 423
Paths 74, 208, 284, 545, 580
Patrols 563, 565
Pavement markings 8, 39, 384, 547, 573
Peak-hour factor 79, 80, 97, 111
Peak-hour volume 80, 108
Pedestals 230, 499
Pedestrian 4, 11, 36–47
behavior 38
child pedestrian accident 38
facilities 43, 94, 345, 407–408
handicapped pedestrians 409
older pedestrian 42
accidents 36, 47
accidents at night 42
fatalities 38, 192
safety 47
signals 39–40, 209, 453, 525
audible pedestrian signals 498
walking speed 41
walkway 562
social factors 42
Pelican crossing 39
Percent time delay 116
Perception 7, 45, 160
drivers' perceptions of their own driving ability 26
main factors in 9
measuring perception-brake reaction time 12
of hazards 25
of signs 21
perception-reaction time 11, 14, 67, 323, 481
Performance 6, 17, 188, 251, 277, 420, 587, 642
Permanent International Association of Road Congresses 295
Permissive mode 471–479
Phasing 470–471
Pictographs 34
Planning 1
highway planning 211, 352, 599
planning for the control of high-speed traffic 65
traffic planning 263, 267–268
transportation planning 3, 93, 166, 362, 609
trip planning 6, 653
Planning analysis 101
Platooning 90, 336, 674
Poisson distribution 84, 133, 138, 148
Police 46, 191, 250, 443
police patrol 577, 600
Policy development 2, 184
Policy on Geometric Design of Highways and Streets 54, 224, 256, 312, 350, 544
Positive guidance 68, 414
Power requirements 60–62
Preemption/priority control 520–522
Preventive maintenance 527, 566, 670
Prima facie speed limit 244
Prime parking area 571
Probability 127
Productivity 210, 449, 596, 656, 683
PROMETHEUS 643
Protected-only left-turn phasing 241
Protected/Permissive 456, 467, 471, 515
Proximate 343
Public involvement 165
public education 251
public process 176–179
public relations 166, 256
public hearings 166, 180
public information 29, 183–186, 254, 363, 598
Queue 87, 91, 130, 325, 470, 515, 581, 660
Queuing 96, 139, 243, 337, 521, 683

Radar 513, 647
 detectors 513
 device 252
 low-powered radar 674
 radar-reflective stripes 655
Radio 216, 490, 511, 594
 advisory 255, 597, 651
 AM and FM 602
 CB radio 600, 618
 communications 425, 620, 632
 detectors that use radio frequencies 511
 highway advisory radio (HAR) 651
 interconnect 485
 microwave radio 490
 stations 216, 651–652
 spread spectrum radio 490
 two-way radios 564
Rail station 536
Rail transit car 71, 73
Railroad car 71
Railroad crossing 202, 414, 434–435, 521
Railroad-highway grade crossing 213, 242–243
RAIR 24
Raised pavement markers 440
Ramp 32, 118, 233, 392, 531
 control signals 455, 466
 curb ramp 409
 design of pavement width on 55
 entrance ramp 396, 398, 445, 454, 524
 exit ramp 398
 freeway ramp 32, 388, 424
 metering 302, 398, 524, 608, 647
 ramp-metering signals 524
Random variables 128
Rate of flow 80
Reaction time 9, 11, 358, 408, 481
Recommended Guidelines for Subdivision Streets 56, 351, 407
Reconstruction 41, 199, 227, 282, 342, 359, 364, 511
Records 7, 214
 accident records 240
 crash records 412
 driving records 7, 28
 electronic data interchange standards 654
 incident records 565
 maintenance records 527
 safety records 238
Recreational routes 54
Recreational vehicles 51, 53, 99, 544
Red flashing lights 424
Regional transportation operations 657, 659
Regression-to-the-mean 162
Regulations 29, 100, 197, 224, 241
 emergency regulations 219, 253–254
 lane-use 231
 operating 198
 right-of-way 235
 roadway 244
 safety 220
 speed 219, 244, 249
 traffic 113, 219, 258, 598
 turn 239–240
 types of lane regulations 223
 uniformity in traffic laws and 221
 Regulatory signs 235, 240–241, 415, 424, 446, 522
 Rehabilitation 350, 359, 598
 Reporters 185–186, 600
 Residential areas 226, 251, 316, 408
 Residential street design and traffic control 257, 305
 Residential streets 56, 75, 166, 223, 595
 Resistance to motion 50, 57, 61
 Response vehicles 660, 679
 Restoration 115, 359, 678
 Restraints 126, 198, 258, 655
 Resurfacing 144, 343, 511, 514
 Retroreflectivity 15, 416, 419, 423, 449
 Revenue control systems 557, 567
 Reversible lane control 523
 Reversible lane systems 230–231
 Right-of-way 20, 38, 90, 228, 235, 307, 391, 610, 643
 Right-turn conflicts 326
 Right-turn lanes 241, 342, 384, 386, 496
 Right-turn-on-red 40, 333, 518, 519
 Risk 25–26
 Risk management 223
 Road 4
 designing roads 6
 standard in design of roads 12
 environment 7, 15, 289, 306
 hazards 15, 440
 hierarchy 267, 313
 surface 13–14, 42, 208, 285, 374, 511
 rural roads 14, 104
 service road 208, 334, 542, 573
 Road rage 27
 Road surface 15, 74
 Road/Automobile Communication System (RACS) 643
 Roadside 36, 96, 157, 245, 334, 360, 379–380, 401, 514, 600
 Roadside barriers 380, 447, 463
 Roadside Design Guide 380, 410, 566
 Roadway(s) 7, 21
 at night 42
 bicycle roadway 407
 classification 350
cross section 376–377, 391, 400
design of 11, 13, 36
design of public roadways 55, 327
roadway design 30, 50, 135, 306, 405
geometrics 54, 56, 200, 592
high-speed roadway 158, 327, 419
local street 407
low-speed roadway 48
medians 380–381, 404
roadway acceleration rates 62
roadway environment 4, 8, 355
roadway conditions 22, 85, 244, 419, 557
roadway system 4, 36, 42, 100, 219, 551, 581, 590, 599
roadway surveillance 599–600
roadway transportation system 4
roadway width 75, 231, 244, 387, 481, 569
super two 378
Roller blading 41, 48
Rolling resistance 57–58
Rotating drum signs 425
Routes 31, 111, 177, 235, 407, 459, 517, 593, 610
Roundabouts 91–92
Rules of the road 24, 39, 222, 553
Rumble strips 206, 399, 440, 443
Runoff 368
storm water runoff 538
superelevation runoff 368
runoff lengths 368
Rural freeways 391
Rural highways 99, 104, 110, 113, 336, 377–378, 398
Rural ITS planning 660

S

Safety 2, 11
community safety 190, 211
countermeasures 29, 47, 215
devices 34, 47
education 215–216
effects 43, 598
hazards 36
highway safety 191, 220, 295, 349, 596
impacts 161, 409
management systems 213
measures 28, 33
needs 2, 213, 215
pedestrian safety 39, 46, 280, 298, 569
child pedestrian safety 46
road safety 162, 250, 258–259
safety campaigns 9, 25
traffic safety 4, 17, 28, 179, 617, 641, 674
tracked and analyzed traffic safety data 167
traffic safety programs 46, 201, 215, 221
work zone safety 29, 221
Sample size 41, 129, 142, 151
Sampling 104, 126, 135, 141–143
Saturation flow rate 87–89, 121
Saturation headway 88, 122
School speed limits 248
Scooters 202, 540, 544
Scramble timing 39
Seat belts 25, 29
Semitrailer 52, 56, 70, 299, 319, 387
Service flow rates 95, 98, 99
Service interchanges 392, 395
Service rate 532, 534
Service roads 334, 542
Setback 308, 325, 375, 408, 503
Sex 42, 194
Shared parking 569
Shopping center 532, 568, 577
Shoulders 98, 206, 228, 345, 379, 398, 610
Side friction 365–366, 581
Side slopes 379, 546
Sidewalk 43, 93, 209, 402, 408, 462, 504, 533
Sight distance 1, 13, 207
decision sight distance (DSD) 7, 13, 373, 375
determining sight distance 12, 376
intersection sight distance (ISD) 14, 238, 339, 375
passing sight distance (PSD) 224, 373–374, 446
passing zone sight distance 32
restricted sight distance 205, 429
stopping sight distance (SSD) 67, 291, 292, 325, 373
types of sight distance 13, 373
Sight obstruction regulations 238
Signalized intersections 38, 78, 87, 385, 462, 581, 614
Signal(s) 5, 32
audible signals 43
control cabinets 456
controller operational terms 457
detectors 510–519
DON'T WALK 39–40
operational modes 455–456
pedestrian signals 40, 496, 498, 506
audible pedestrian signals 498
pedestrian detectors 520
pedestrian walk signals 41, 240
pedestrian-actuated signals 39–40
right-turn guidelines 461
systems coordination 457
signal systems 484–489, 496
actuated control 463
closed loop 487
controller units 465
flashing mode 467
pre-timed control 464
rules of signal display 468–469
signal interconnection 488–490
signal progression and coordination 482–483
time-based coordination 487
studies 461
traffic 27, 46, 87, 219, 301, 466, 522
number of lanes 461
turn 40, 240
left-turn 20, 500, 502
turn restrictions 100, 239, 241
WALK signals 41
removal 462
warrants 460
Sign(s) 8, 215
artificial 5
color codes on 15
dynamic message signs 639
legibility 21, 31
letterheight 418
maintenance 448–450
materials 447–448
mounting 428–429
overhead highway signs 9
pedestrian signs 39
placement of 8, 21, 425–427
shapes 416
shop operations 451–452
STOP signs 33, 78, 87, 161, 236, 416, 444, 526
supports 430–432
warning signs 14, 206, 242, 415, 442, 522, 607
advanced warning devices 206
YIELD signs 90, 161, 235, 417, 445, 522, 553
Site access 339, 341, 568
Site characteristics 317, 556, 560
Size constancy 45
Sleep deprivation 15, 18
Slip base 499
Smart Cards 650
communications protocol that will have to be overcome 667
for multiple transportation payments 657
microprocessors that store account balances 666
Smart vehicles 199
Snow Emergency Regulations 253
Social behavior 6, 24
Society of Automotive Engineers 31, 665
Software acquisition 668–671
Solomon trap 169
Space mean speed 80–83
Spacing of traffic 315, 483
Spare mental capacity 10
Special events 108, 145, 151, 252, 530
Special Report 218 49, 418
Speed 6, 33, 225, 445
degree of speed control 464
design speed 14, 67, 96, 268, 351–352, 373, 399
flow relationship 119–120
speed laws 25
basic speed law 244
limits 7, 22, 31, 115, 126, 144, 220, 248
advisory 246
maximum speed limits 244
minimum 249
prima facie 244
regulatory speed limits 245
school speed limit 248, 522
trends 115–117
upgrades 62
work zone speed limits 248
management 119–120
traps 245
zoning 244–245, 248
special speed zoning 248
speed zoning procedures 245
Split 99, 304, 457, 479, 630
split phase 478
Sports facilities 614, 649
Spot speed 80–81, 92, 206, 245
Spot speed studies 245
STAA 52, 55, 61
Stakeholder 176–184, 658
Standard deviation 128, 131, 140, 156
Start-up lost time 89, 122, 124
State Highway Access Code 310, 312, 387
Static visual acuity 8
Statistics 126
Stop bars 207, 434, 545
Stop control 90, 100, 236, 375, 462
STOP sign 128, 584
Stopping sight distance 13, 66, 238, 316, 368
Storage 71, 240, 315, 328, 333, 532, 663, 677
Streets 1, 202, 228, 260, 533
city 99, 298, 306
urban design of streets 259
commercial 227
CTWLT on 225
designated as snow routes 253
environment of 260, 282
intersecting 281, 500
local 183, 257, 262, 297, 351, 449
main 260, 294, 299
MUTCD 206, 222, 224, 236, 374, 411, 418, 603
one-way 47, 226, 231, 532
opportunities for streetscaping 258
procedures for analyzing 93
public 258, 338, 531, 586
intersecting public 318
residential 234, 244, 252
urban residential 244
safer and more livable local 258, 262
two-way 47, 226, 532
Structural Systems 559
Studies 12
conflict analysis 412
empirical studies 121, 210
engineering studies 126, 151
engineering field studies 147, 157, 162–163
impact studies 306
highway construction impact studies 361
ITS impact studies 306
ITS studies 100
long-range planning studies 111
observational studies 144
of gender differences 23
of individual differences 6
parking studies 443
pilot studies 147
research studies 93, 643
traffic studies 3, 201
Suburban highways 402
Superelevation 56–57, 206, 366, 368
Surveillance 290, 563, 599, 601, 612, 660, 677
Swept-path width 56
Symbol markings 434, 436
System concept 658, 674
System interchanges 392
Taper 316, 327, 459
taper length 327, 337, 439
taper rate 327
TEA-21 220–221
Technically compelling solutions 167
Taxi zones 580, 584, 585
Telephone-type cables 489–490
Telephones 35, 600
cellular phones 514, 618, 643, 666
emergency telephones 564
vehicle telephones 35
Television 185, 489, 633, 642–643
television imaging 514
CCTV monitoring 563
imaging detection system 514
virtual sensors 514
roadway detection devices 599
television traffic reports 603
Temporary signs 424
Thermoplastic 432, 451
Through-band 338
Time(s) 7, 11
ability to time-share tasks 21
high-risk times 23
movement time 11
required for head and eye movement 11
reaction time 11, 22, 325
average time to brake 12
simple reaction time 11
response time 7, 414, 517, 660
time-based occupancy 83
time mean speed 80–82
time value 70
time-space-velocity relationship 14
time-to-collision 7
travel times 80–81, 143, 682
average travel times 234
peak travel times 150
Tire wear 71
Tire-pavement friction coefficients 66
Toll facilities 233, 351, 391, 610, 649
Topography 98, 351, 556
site characteristics 532, 556
topography and the environment 351, 356
Tort claim 223, 589, 637
Tort liability 223
Total travel 264, 299
Tractor-trailer 16, 542–543
Traffic 1
calming 257
directional distribution 111, 113, 121
spacing and headway 84
speed 6, 13, 328
traffic composition 113, 115
traffic demand management 609–611
volumes 40, 78, 378, 568
Traffic conditions 29, 84, 98, 100, 205, 412, 451, 517, 602
Traffic control 29–30
devices 1, 8, 15, 201, 254, 335, 401, 408, 498, 529, 589, 607
plans 248, 359
strategies 71, 466, 648, 657
traffic signal control 243, 375, 459, 466, 485, 514, 549, 643, 688
Traffic engineering 1–3, 51, 188, 459, 590
Traffic flow 62, 68, 78, 84–85, 524
Traffic generators 36, 263, 342, 549
Traffic island 388
access management 3, 306
access control 307–308, 351
access management policies 307, 309
access regulation 307
local area 258
neighborhood 258
legislative authority 307
special events 185, 557
strategies 300
Traffic management center 631
Traffic records 218
Traffic regulations 219
Traffic safety 17, 35
programs 211–212
Traffic volume 40, 42, 87, 427, 446
Traffic-actuated controller 525
Trail 76
Trailers 99
Training 2–3, 16, 32, 188
Tranquilizers 19
Transformer 497, 499
Transit lanes 261, 302
Transit management 649, 680
Transit vehicles 50, 71, 459, 601
Transitions 29, 188, 224, 285, 437
Transportation engineering 1, 135, 182, 312
Transportation Planning Handbook 3, 263, 407
Transportation Research Board 3, 410
TRANSYT-7f 484
Travel speed 95, 296, 337
Travel information 651–654, 672–673, 682–683, 687
Traveled way 498
Trip generation 121, 304, 309, 609
Trip reduction ordinance 304
Trolley bus 71
Truck loading 579–580
Truck drivers 30–31
Trucks 9, 30, 50, 430, 611, 653
aerodynamic drag 59
combination 51
double-trailer 53, 55, 70
IVHS 642, 644
offtracking 55–56, 378
restrictions 234
rolling resistance 57–58
single-trailer 52
single-unit 51–52, 70, 544
triple-trailer 53
Tubes 230
Tunnels 104, 231, 579, 584
Turn restrictions 239–241
Turning movement 55, 124, 226, 319, 432
Turning radii 50, 316, 542, 574
Turning roadways 55, 387–388
Turning traffic 125, 224, 316, 385
Two-way stop 90, 100, 236

U

U-turns 241, 334, 402, 404
Underground garages 561
Underpasses 38, 573–574
Uniform Vehicle Code 222, 235, 244, 584
Uninterrupted flow 118, 310
United Nations 190
Universities 579, 642, 666
Unsignalized access points 307, 316, 339
Unsignalized intersections 78, 90, 92, 125, 316
Upgrades 14, 70, 98, 408
Urban planning 290–292
Urban Traffic Control System 486, 643
Useful field of view 10
Utilities 287, 400, 405, 499, 686

V

Vans 50–52, 98, 415
Variability 131
Vehicles 1, 6
 acceleration performance 61, 75
 arrivals 84
 controls 34
 deceleration performance 50, 53, 65, 72
 design vehicles 7, 50, 54–55, 319, 355
 differential speed limits 250, 251
 dimensions 51
 heavy vehicles 54, 62, 98, 348, 477, 655
 intelligent vehicle 220, 642, 646, 655, 675
 operating costs 50, 68, 336, 596, 660
 ownership per capita 50–51
 power requirements 50, 75
 resistance to motion 57
 transit vehicles 71–72, 95, 610
 turning radii and offtracking 55
 types and dimensions 50
 vehicle accidents 4, 229
 bicycle/motor vehicle accidents 229
 commercial vehicle accidents 16
 multi-vehicle accidents 23
 single-vehicle accidents 4
 vehicle travel 54, 101
 vehicle use 54
 Verkehrsberuhigung 258
 Vertical 14, 55
 clearance 55
 vertical alignment 98, 353, 371, 398
 vertical curves 370, 446, 502
 vertical panels 442
 Vibration 16, 271, 497, 507
 Visibility 13, 15, 33, 207, 244, 507, 547
 Visual abilities 7, 22
 Visual acuity 22
 Visual factors 8
 Volume 1, 34, 480, 509, 531
 monthly variations 106
 daily variations 107
 hourly variations 107

W

Waiting 46, 90, 327, 479, 525
Walk alert 47
Walking speed 41–42
Warning signs 8, 148, 209, 251, 416
Warrants 40, 236, 315, 583
Waterproofing 566
Weather 11, 29, 440, 509, 544
Wheelchair detectors 520
Windshields 15, 22, 35
Woonerf 47, 258
Work zones 29–30, 248, 417, 598
Wrong-way movements 384, 417

Y

Yellow change interval 480–481
Yellow flashing lights 424
Yellow Pages 651, 653
Yellow trap 479–480
Yield Control 235, 238, 375, 553
YIELD signs 161, 206, 426, 445
Young drivers 22

Z

Zebra crossing 39
Zero 26, 47, 79
 hypothesis of zero difference 161
 zero-grade roads 63
 zero-risk theory 26
Zone 29, 32, 224
 central zone 296
 construction zones 29, 511
 crumple zone 74
 spatial crumple zone 74
 no-passing zones 219, 224
 passing zones 32, 57, 399, 446
 school zones 248, 432, 435
 speed zones 245–246, 248, 426
 regulatory speed zones 245
 Speed Zone Survey 246–247
 types of speed zones 245
 transition zone 296–297
 work zones 29, 248, 424, 440, 598
 zone-based conditions 277